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Abstract—With the development of cloud-based systems and
applications, a number of major technical firms have started
to provide public cloud storage services, and store user data in
datacenters strategically positioned across the Internet. However,
when users store private data in shared datacenters, they lose
control over how the data are stored and accessed. Multiple
classes of personnel may access the physical storage media and
potentially read the data. While strong cryptographic methods
can protect user files from unauthorized accesses, they incur com-
putational overhead, and make it difficult for the infrastructure
provider to optimize the storage space with effective compression
and deduplication. To provide strong protection on user data,
we design a new file system called BIFS (Bit-Interleaving File
System). Focusing on the privacy protection of the on-disk state,
BIFS re-orders data in user files at the bit level, and stores
bit slices at distributed locations in the storage system. While
providing strong privacy protection, BIFS still retains part of
the regularity in user data, and thus enables the infrastructure
provider to perform a certain level of space optimization (e.g.,
compression). We implement BIFS on the Amazon Simple Stor-
age Service (S3), and examine its performance characteristics.
The comparison with several existing network or Internet-based
file systems shows that BIFS provides robust file system functions
with satisfactory throughput on S3.

I. INTRODUCTION

In recent years, cloud-based services and applications have

emerged to be a new computing paradigm and lead to the es-

tablishment of global data storage and computation platforms.

However, one major challenge is to construct a well-defined

technical solution to store private user data on a shared and

uncontrolled infrastructure. When end users release their data

to remote datacenters, they lose control over the data after

the bits leave their client computers. Existing scalable storage

solutions, such as GFS [1], Dynamo [2], Bigtable [3], and

PNUTS [4], scale up the data storage capacity and throughput,

but have largely left privacy protection as a non-goal or future

work. We list some potential privacy hazards below.

First, user data are exposed to operators who have access

to the media in the datacenter, programmers who develop

code with the low-level block interface, and third-party service

staff who repair the hard drives when they are broken [5],

[6]. Second, the storage media can be lost or stolen, and

the storage server may be compromised [7]. Finally, many

legitimate accesses to the physical media, such as debugging

activities, may reveal and manipulate user data in a way that is

in conflict with the end users’ privacy concern. Unfortunately,

the end user may not even be aware of the existence of such

debugging activities.

The characteristics of sharing obscures the boundary of

ownership, complicates data management, and makes tradi-

tional solutions, including encryption and access control, inef-

fective and undesirable for large online storage infrastructure.

Strong encryption, for example, could be used in traditional

enterprise environments to protect proprietary digital assets,

but imposes noticeable overhead on the storage system [8],

[9]. Zadok et al. shows that the encryption overhead may reach

22.7% [10]. In an investigation using eCryptfs [11] on modern

compute servers, we observe an overhead of about 30% when

enabling an encryption layer above the ext4 [12] file system.

Moreover, compression and deduplication have become in-

creasingly important in very-large-scale storage systems [13].

However, these features work poorly on encrypted data [14].

Though it is possible to use file-specific keys to generate

identical ciphertexts (convergent encryption) [15], [16], such

approaches incur significant space overhead, and are not appli-

cable to data with minor differences. Overall, traditional tech-

niques effectively used in personal and enterprise computing

environments, such as encryption, discretionary access control

and obfuscation, fall short of providing an adequate solution

to privacy protection in large-scale cloud storage systems.

To overcome these challenges, we design a privacy-

preserving file system to protect the on-disk state of user data

stored in cloud-based storage services. The file system service

runs on end users’ client computers, but stores data on public

online storage services, such as Amazon S3 [17]. Although the

on-disk state is materialized in a shared storage infrastructure

that the end user has no control over, our design makes it

practically infeasible for unauthorized users, including the

system administrators, to identify user data on the storage

media. Yet the storage system can still perform a certain

level of compression on the user data bits. Departing from

the traditional file system designs, the new file system, called

BIFS, re-orders data bits in a way that retains certain regularity

in the file data, and stores them at distributed locations. The

regularity prevents a dramatic increase in the entropy of the

data, and enables compression and deduplication operations.

In the mean time, the bit-interleaving mechanism ensures that

it is very difficult for unauthorized users to take advantage of

the regularity to recover user files and directories.

The BIFS design abandons the long-time wisdom of main-
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taining data locality on the physical media. We believe that

data locality is a less important determinant of file system

performance in the cloud-oriented design context, and that

efficient designs can mitigate a significant part of the over-

head. We implement BIFS on the widely used Amazon S3

(Simple Storage Service) [17], and compare its performance

with several existing network file systems and Internet-based

file systems. The evaluation shows that BIFS is sufficiently

responsive for interactive users, and provides a higher I/O

throughput than some network file systems that do maintain

data locality.

We highlight several contributions of BIFS as follows.

1) To the best of our knowledge, BIFS is the first file

system that performs aggressive randomized bit-level re-

ordering for privacy protection and achieves the required

strength without bit substitution or full encryption.

2) Protecting the on-disk privacy, the BIFS provides a

solution for users to store proprietary, sensitive, or non-

public data on public cloud storage controlled by third-

party vendors.

3) The design and evaluation of BIFS show that we can

“hide” user data so that unauthorized users cannot

identify them, yet the storage system can still perform

a certain level of compression.

4) We implemented BIFS on Amazon S3 and show that the

bit-interleaving design is efficient enough to provide a

robust file system service with decent performance.

The rest of the paper is organized as follows. Section II

proposes the basic design principles of BIFS. Section III

presents the design of BIFS, followed by Section IV discussing

implementation details. Section V evaluates the performance

of BIFS. Section VI surveys related work. Finally, Section VII

concludes the paper.

II. APPROACH

To illustrate the challenges in protecting data privacy in a

cloud environment, we first study the trust relationships among

players in a cloud application system. There are three major

entities in a cloud-based application system: the infrastructure

provider, the application provider, and the end user, which

are roughly equivalent to the Cloud Provider, SaaS Provider

and SaaS User described by Armbrust et al. [18]. Figure 1

illustrates the roles of these entities in a cloud-based system.

Both the application and the end user require access to user

data, which is stored in the shared datacenter infrastructure.

The end user must trust the application provider, otherwise

the user would not elect to use the application in the first place.

However, the end user can neither control nor trust the shared

infrastructure. While a few aspects of the interaction between

the application provider and the infrastructure provider can be

bound by commercial terms, it is essentially impossible for the

infrastructure provider to agree and guarantee that all accesses

to the storage media are conducted in a way that eliminate

privacy hazards. Though it is possible that, in some cases,

the application provider may not be fully trusted, the more

Tax return app

Office Docs app

Online game app

Fig. 1. Participants of an online application system. The infrastructure

provider is the operator of a large storage and computation infrastructure,
including datacenters, replication sites, and network facilities. The application
provider develops application services on the shared infrastructure. The end

user is the customer who use the application service.

critical applications, such as accounting, tax computation, e-

business, are more often handled by well-known firms and

regulated by commercial or even legal terms. Moreover, the

end users are able to build their own application with full

trust, but seldom have the opportunity to control the cloud

computing infrastructure.

It is a challenge to ensure data privacy on an infrastructure

that the user cannot control or trust. Our approach is to treat the

infrastructure as a “dumb” bit storage device, and store data

bits in a form that is practically illegible to the infrastructure

provider. This leads to our first design principle:

Let the user handle data, and the infrastructure handle bits.

It may appear that we could use encryption to achieve this

goal. However, encryption introduces much overhead to the

system, and deprives opportunities for compression and dedu-

plication (refer to Section V-C for an empirical investigation).

Unlike the encryption algorithm which shuffles and mutates

user data, BIFS mainly re-orders (transposes) bits to remove

the semantic correlation that could be used by unauthorized

users to recover the original data. This reflects the second

principle BIFS follows:

Hide data by re-ordering, not substitution.

This approach not only reduces computational overhead,

but also preserves some structural regularity in user data to

facilitate compression and deduplication.

However, without substituting data bits, an unauthorized

user may attempt to permute the bits to recover the original

data. BIFS’s bit re-ordering process makes sure such decoding

is very difficult. Moreover, BIFS strengthens the protection

against decoding attempts by storing re-ordered bits in dis-

tributed locations in the storage system. This is, in fact, the

third principle in the BIFS design:

Improve strength by distribution, not entropy.

This approach can provide very strong protection for user

data—if an unauthorized user cannot collect the bits belonging

to a file, it is generally impossible to decode the data no matter
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Fig. 2. The organization of BIFS

how much computational power the unauthorized user has.

Following these principles, BIFS presents a file system

abstraction above the online storage infrastructure. By dis-

tributing data bits into different locations of the storage infras-

tructure, it ensures that private user data cannot be identified,

in practice, by unauthorized users even if all bits and sectors

on the storage media are visible. In addition, we require that

the BIFS provide a robust file system service with decent

performance in the wide-area network (WAN) environment.

It is worth clarifying that BIFS focuses on protecting the pri-

vacy of on-disk state. There are other types of possible privacy

infringements, e.g., directly peeking the CPU or memory state,

eavesdropping the network to record the collection of data bits

a user reads or writes, or compromising the end user’s client

computer. Many of such threats are also present in traditional

computing paradigms with solutions proposed and tested.

While it is potential future work to port these solutions (e.g.

secure communication [19], [20], trusted instruction execution

[21], [22]) to the cloud environment, this work focuses on the

more challenging problem of protecting the privacy of data

stored on the physical media controlled by the infrastructure

provider.

III. DESIGN

BIFS consists of three components—the BIFS daemon, the

chunk store, and the chunk allocator, as shown in Figure 2.

The three components run in different control domains, and

reflect the trust relationship described in Section II.

The BIFS daemon runs on the client computer. Hence,

the user can control, verify, and trust the BIFS daemon. It

implements the file system abstraction, and transforms the file

system operations to accesses to the chunks in the chunk store.

When using the BIFS, the user provides the BIFS daemon with

a 128-byte “master block”, which contains several parameters

including the user’s credential (e.g. a password or a key). The

user can update the credential when it is necessary, and should

follow known good practices to protect the master block (e.g.

making backups and storing them safely). The BIFS daemon

uses information in the master block to locate user data and

perform file system operations.

The chunk store can be any addressable online storage

services. Our current implementation uses Amazon S3, but

the design can be easily extended to the blob storage [23],

the table based entity store [4], [24], and distributed hashing

storage [2], [25]. More often than not, the chunk store is
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Fig. 3. An example of the bit-interleaving process

controlled and managed by an infrastructure provider, which

is not fully trusted as described in Section II.

The chunk allocator records the allocation information of

all chunks in a chunk store for the purpose of chunk allocation

and deallocation. The chunk allocator is actually a component

for optimizing system performance, since crash or demise of it

does not result in data loss in BIFS. The user can elect to run a

chunk allocator on the client computer for maximum control,

or on a remote server for reducing client-side complexity.

Note that, except for chunk allocation and deallocation, the

BIFS daemon communicates directly with the chunk store for

reading and writing data without involving the chunk allocator.

Independent of how chunks are stored, striped, or replicated,

BIFS should ensure effective file system functions with strong

privacy protection. Specifically, we design BIFS to meet the

following requirements.

• A user holding the master block can use the file system

efficiently with reasonable performance.

• Individual files on the physical media are practically il-

legible to unauthorized users including “insiders” without

the master block, unless the unauthorized users already

have a complete copy of the files.

• Files are practically unrecoverable from the physical

media after being deleted.

This privacy protection in BIFS cannot rely on strong en-

cryption. Instead, it is achieved by the bit-interleaving process,

which is presented in detail in Section III-A.

A. Bit-interleaving

BIFS treats a datum in the file system (file, directory,

metadata block, etc.) as a bit sequence d with length ‖d‖.
We first append m × h − ‖d‖ padding bits at the end of d

to form a new bit sequence d∗ with length m × h. Here m

is a system parameter, and h = ⌈‖d‖
m

⌉. We organize the bits

in d∗ to be an m× h matrix D in row-major order. Then we
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serialize the bits in D in column-major order to obtain a new

bit sequence d′. Hence, d′[i] = d∗[(i mod m) × h + ⌊ i
m
⌋],

where d∗[i] and d′[i] are the ith bit of d∗ and d′, respectively

(0 ≤ i < m × h). d′ is further divided into variable-length

bit slices with lengths chosen between the minimum slice

length (lmin) and the maximum slice length (lmax). The slice

cutting and distributing process will be discussed later in

Section III-B. We call this bit re-ordering and slicing process

bit-interleaving, and call d′ the bit-interleaved sequence. The

parameters m, lmin and lmax shall be chosen to avoid values

that could weaken the privacy protection strength, which is to

be discussed in further detail later.

Figure 3 shows an example of the bit-interleaving process.

The input bit sequence d is first transformed into a matrix D

with 5 columns and 5 rows with one padding bit appended.

Scanning D in column-major order, the bit-interleaving pro-

cess cuts d′ into 4 variable-size bit slices, and distributes them

into 3 chunks in the chunk store.

It is obvious that there would be a potential risk if m is not

chosen properly. Specifically, in the case that the bit sequence

is a serial of ASCII characters with ‖d‖ ≥ 64 and m is 8,

the slice0 contains all ‘0’. An unauthorized user may reveal

the user data using brute-force methods by speculating that

slice0 is a collection of the most significant bits of ASCII

characters. Such brute-force attacks and speculation become

extremely difficult when the number of slices is large, and

the design details of BIFS makes such attacks practically

infeasible. Nevertheless, we shall choose system parameters

to avoid predictable boundary alignment. We require that no

slice contains two bits from the same byte in d. Hence, we

require m ≥ 8, and lmax ≤ ‖d‖
m

, and m should not be a

multiples of 8.

Furthermore, BIFS mixes slices from different files when

storing them on chunks. Because slice lengths are not fixed, it

is extremely difficult for an unauthorized user to identify the

boundaries of the slices and retrieve them for matching and

analysis.

B. On-disk data organization

The bit-interleaving process disassembles continuous data

bits, creates variable-size slices, and stores data in distributed

locations. Traditional I/O optimization techniques can hardly

apply in this new data organization scheme. Hence, it is

very important to design the on-disk data organization so that

the aggressive re-ordering does not drastically increase the

overhead in storage space and I/O performance.

In BIFS, there are three levels of storage units: files, blocks

and slices as shown in Figure 4. Each file is divided into a

number of fixed-size blocks, which are processed by the bit-

interleaving process and stored as a number of variable-size

bit slices on chunks distributed in the system.

User files and their metadata are stored in a number of

chunks. Figure 5 depicts the layout of a chunk. One chunk

is a fixed-size sequence of bits, and each chunk logically

belongs to one user. A chunk consists of three parts—Current

Slice ID (CSID), Slice Mapping Table (SMT) and a slice area
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Fig. 4. Data organization in the BIFS file system
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Fig. 5. Structure of a chunk

for storing bit slices. The CSID stores a 64-bit integer used

for the slice allocation, and the SMT is a vector with each

entry corresponding to a physical slice. We will introduce the

functions of the CSID and SMT in detail later with the slice

allocation algorithm.

In BIFS, a block is composed of slices stored on multiple

chunks in the slice areas. The slice area of a chunk is parti-

tioned into n physical slices—p slicec,k, where c is the chunk

ID and k represents the physical slice number (0 ≤ k < n).

These physical slices are of variable sizes and their lengths

are calculated with a function g with three parameters—the

user’s credential (r), the chunk ID (c), and the physical slice

number (k), i.e., ‖p slicec,k‖ = g(r, c, k). The function g is an

irreversible hash function [26], [27] with the weak collision

resistance property. The starting address of a physical slice,

p slicec,k, in the slice area is the sum of the lengths of all

the physical slices before it (
∑k−1

i=0
‖p slicec,i‖). Hence, a

physical slice number uniquely identifies the slice’s physical

position in the chunk. In a chunk c containing n physical

slices, p slicec,0 and p slicec,n−1 are filled with random bits,

in order not to reveal the boundary of the effective data area

in a chunk.

To store and retrieve a block, we need an efficient mecha-

nism to record the position and order of each slice of the block.

The intuitive approach of recording the 〈chunk ID, physical

slice number〉 for all the slices constituting a block incurs

significant storage overhead. We introduce a space-efficient

approach using fixed-size block descriptors in the next section.

C. Space efficiency on recording slices

To enhance the strength of privacy protection, the BIFS

mixes the slices from different blocks and stores them in a

permutated order on a chunk. To facilitate the slice re-ordering,
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the BIFS uses a logical slice ID, instead of the physical slice

number, to address a slice. We record the mapping from a

logical slice ID to a physical slice number in the SMT. Each

physical slice has a corresponding entry in the SMT, and the

logical slice ID mapped to this physical slice is recorded in

the entry. Hence, we can use 〈chunk ID, logical slice ID〉 as

the slice reference. Though the mapping from the logical slice

ID to the physical slice number is stored in SMT as plain-

text, it does not harm the privacy protect strength of BIFS

because the physical slice number of a slice does not provide

information to determine the position and length of the slice.

In the remainder of the paper, we refer to the logical slice ID

as the slice ID.

To facilitate the allocation of slice IDs, we record a CSID

on each chunk. The CSID reflects the largest slice ID currently

used in this chunk. It starts from 1 upon chunk initialization,

increases monotonically, and may grow beyond the number of

all physical slices in the chunk. When allocating a new slice on

a chunk, BIFS allocates a vacant physical slice on the chunk,

assigns the CSID on that chunk to the new slice as its slice

ID, records the slice ID in the SMT entry corresponding to the

physical slice, and increases the CSID by one. De-allocating

slices does not decrease CSID, and a chunk is considered full

when all the physical slices on the chunk are allocated. This

technique, in fact, also optimizes the space efficiency of the

BIFS upon file deletes.

It is obvious that the slice IDs of the successively allocated

slices on a chunk form a sequence of contiguous numbers

starting from the slice ID of the first allocated slice. This

slice ID of the first slice for the block is called FSID and

it is always equal to the CSID of that chunk before the BIFS

allocates the slices. Hence, we may use the 〈chunk ID, FSID〉
to represent all the slices allocated on a chunk for a block.

Therefore, the information we need to store for retrieving a

block is a fixed-size vector of M elements, each element being

a 〈chunk ID, FSID〉 pair. In BIFS, we call such a vector a

block descriptor (denoted as blk desc). Thus, the order and

position of bits in a block are unambiguously determined by

a block descriptor. Using block descriptors can reduce 70%

space overhead compared to the intuitive approach.

To summarize the on-disk data organization, we list the

procedure of writing a new file as follows: 1) cut the file into

a number of fixed-size blocks; 2) apply the bit-interleaving

process to obtain variable-length slices for each block; 3) store

each block’s slices in M randomly chosen chunks; 4) save the

block descriptor for each block.

D. Metadata organization

As described in Section III-B, BIFS uses block descriptors

to uniquely specify a block. As a sequence of block descriptors

together with a number representing the file size can unam-

biguously define the content of a file, BIFS stores the sequence

of block descriptors, the file size, and the other attributes for

a file. BIFS defines a special type of blocks called the index

block. In each index block, there are multiple entries for block

descriptors, which can store the block descriptor of either a

Algorithm 1 Slice allocation

Input: B′: a bit-interleaved file block
Output: blk desc: a block descriptor
1: Randomly pick up M chunk, denoted as (C0, C1, . . . , CM−1);
2: for i = 0 to M − 1 do
3: blk desc.chunk id[i] = Ci;
4: blk desc.FSID[i] = CSIDCi

;
// CSIDCi

denotes the CSID of chunk Ci

5: end for
6: offset=0;
7: s = 0; // slice order
8: while offset< ‖B′‖ do
9: Allocate a chunk for the new slice. cs = f(r, blk desc, s),

where cs ∈ {C0, C1, . . . , CM−1};
10: Randomly pick up a physical slice (p slicecs,m) on chunk cs,

and store CSIDcs
in the entry for p slicecs,m in the SMT;

11: Calculate the length of the physical slice, slice lencs,m = g(r,
cs, m);

12: Calculate the offset of the physical slice, slice offsetcs,m =
Pm−1

j=0
slice len cs,j ;

13: Copy slice lencs,m bits from offset in B′ to chunk cs starting
from slice offsetcs,m;

14: CSIDcs
+ +;

15: s + +;
16: offset+ =slice lencs,m;
17: end while

data block or a next-level index block. The index blocks are

organized in a tree structure and the index block at the leaf

of the tree stores the block descriptors for data blocks. In this

way, all the block descriptors for the data blocks of a file can

be retrieved when the root index block is provided.

To store file attributes, another type of descriptors is added

to the system—file descriptor, which stores file name, file

attributes and the block descriptor of the root index block.

Naturally, directories can be implemented as special files

containing a number of file descriptors, each file descriptor

referring to a sub-directory or a file in the directory. Suffices

for it, hence, to store only one file descriptor (the master

block)—the file descriptor of the root directory—and protect

the file descriptor with measures that the user considers

necessary and sufficient, in order for a user to access the entire

file system.

E. Resistance to privacy infringements

The BIFS stores a block in two steps:

1) Shuffle the data bits of the block with the bit-interleaving

process and cut the shuffled bit sequence into slices.

2) Use the slice allocation algorithm to distribute slices into

M randomly selected chunks.

To analyze the resistance of BIFS to privacy infringements,

we first look into the brute-force attack. We assume that

the adversary has some knowledge of the file system—it is

possible that the system configurations are exposed to the

adversary so that the adversary knows the bit-interleaving

interval m, minimum slice length lmin, and maximum slice

length lmax. We can find the lower bound of the number

of slices in one block and one chunk are B = ⌈ ‖b‖
lmax

⌉ and

S = ⌈ K
lmax

⌉ respectively, where K is the size of a slice area
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in bit. We can further assume that all the slices can be retrieved

from the chunks though it is, in practice, extremely difficult

for adversaries to obtain the slices mixed with each other in

the chunks. Even if we do not consider the slice boundary

obfuscation on chunks, the lower bound of the number of

possible combinations that a brute-force attack must consider

is CM
Q × AB

S×M , where the slices in one block is distributed

into M chunks, and the total number of chunks in the file

system is Q.

Suppose we store 8 KB blocks with lmin = 4096 bits and

lmax = 5120 bits in 4 MB chunks (K = 32 Mb). Conserva-

tively, we assume that we have 1 GB storage space, totally 256

chunks (Q = 256), and that each block is distributed into 4

chunks (M = 4). The number of the possible slice sequences

of a single block is larger than 2218, which is not practically

feasible for current conceivable computational capability.

The analysis shows strong strength of privacy protection

under brute-force attacks even if the adversary is able to

obtain all the chunks. In reality, it is highly unlikely that an

adversary can access all the storage media (e.g. hard drives)

in a datacenter. Even an insider can only access part of the

storage system in usual situations. A further extension is that

we distribute the chunks among multiple clouds to make it

essentially impossible for the adversary to collect all the data

bits in order to compromise the system. Nevertheless, the

analysis suggests that, even if all the chunks were placed in one

bucket, BIFS could still provide sufficient resistance against

privacy infringements.

Considering a more intelligent attack, we assume that the

adversary may arbitrarily choose some files and insert them

into the BIFS. This is much similar to the chosen-plaintext

attacks. In this scenario, the adversary may choose a piece

of data d1 and apply the bit-interleaving process to obtain

d′
1
. Then, if some user writes d1 to the BIFS, the adversary

may detect the on-chunk slice allocation scheme of d1 by

comparing the bits on chunks with bits in d′
1
.

However, knowing the slice allocation scheme of some

blocks does not hurt the BIFS because the property of the irre-

versible hash function f guarantees that it is nearly impossible

to obtain the original data from the hashing outputs. Thus, the

user’s credential is secure. Meanwhile, the cutting and locating

scheme of slices in different blocks is generated from different

block descriptors. That ensures the adversary may not apply

the same slice allocation scheme to other blocks.

The analysis above suggests that it is tremendously diffi-

cult for an adversary to identify the slices of a block for

any reasonably non-trivial file system without knowing the

block descriptors which are controlled by the user. As BIFS

follows the design principle of “hide data by re-ordering,

not substitution”, an adversary may be able to reveal some

information of the user’s files in some pathetic cases (e.g.

a file system with only two files, one containing all 0s and

one containing all 1s). These pathetic cases are obviously rare

in the real-world systems. Although it is possible to further

strengthen the system by introducing some artificial files, we

leave the protection of these trivial file systems as a non-goal

for BIFS. Meanwhile, some statistical characteristics of the

file system, such as the ratio of 0s to 1s, may be exposed to

the adversaries. In a very-large-scale storage system, a large

number of files from different users are stored together. This

prevents the statistical characteristics of the whole file system

from exposing the information of individual user files.

F. Opportunity of compression and deduplication

Retaining certain regularity of data bits constituting the

on-disk state is an advantage of BIFS. As files sharing ma-

jority of content with slight differences are common in file

systems [28], there remain opportunities for compression and

deduplication for such files. We will evaluate the compression

and deduplication opportunity using real-world examples in

Section V-C.

Meanwhile, the compressibility does not compromise pri-

vacy protection. As users’ credentials are different among

users, which may along with the chunk ID and the physical

slice number determine the length of each slices cut from

the bit-interleaved sequences, the distribution of slices has

significant variation. This prevents unauthorized users from

recovering user data that they should not access.

IV. IMPLEMENTATION

BIFS presents a file system abstraction similar to traditional

UNIX file systems. The current implementation of BIFS uses

Amazon S3 (Simple Storage Service) as the chunk store.

The BIFS daemon is implemented on Linux using the FUSE

(File System in User Space) interface, which is a loadable

kernel module that enables a file system to run in user

mode without modifying the kernel code. Through the bit-

interleaving process, file data are re-ordered and stored on

chunks which are implemented as key/value pairs in the S3

storage service.

Amazon S3 provides the “eventual consistency” [29], which

does not provide a guarantee of when the update can be seen.

Reading an object after an update may not always return

the most up-to-date state. This is a critical issue for the file

systems on S3. Instead of immediately deleting the chunk after

updating it to S3, we keep it in the cache for a while and verify

whether the latest updates are visible on S3. This verification

mechanism enhances the robustness of BIFS.

The sizes of some data structures in the design affect

the balance between metadata and file data as well as the

efficiency of the file system operations. We design the chunk

ID and CSID to be 64-bit integers in BIFS. An 8 KB block

may contain up to 128 block-descriptors which may describe

chunks containing 1 MB data. That also means that files of no

more than 1 MB do not need to use second-level index blocks,

benefiting the performance on small files. Based on the block

size and bit-interleaving interval, we specify the suitable range

for slice length to be 4096 – 5120 bits.

V. EVALUATION

In this section, we first introduce the configuration of our

experiment testbed. Then, we measure the performance of
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TABLE I
BIFS OPERATION THROUGHPUT

Operation Throughput

sequential read 2.3 MB/s

sequential write 18.3 MB/s

file creation 4688 ops/s

file deletion 6052 ops/s

the BIFS, and compare it with several existing file systems.

Finally, we verify that the bit-interleaved on-disk state can still

support effective compression and deduplication operations.

To construct similar work environments for the file systems,

the S3 buckets used for the BIFS are all created in the “US

Standard” region. The server end of the other file systems in

the comparison are installed on Amazon EC2 large instances in

the Amazon “US East” region (US East – Virginia datacenter).

We evaluate the throughput of BIFS in Section V-A with

a benchmark program we have designed. In Section V-B,

Bonnie++ and PostMark are used to compare the performance

of BIFS with several existing file systems. Bonnie++ measures

the performance on large files in our experiment, and Postmark

evaluates the file system performance with a number of small

files. While many current distributed file systems focus on

optimizing the performance on large files, small files do

exist and have an impact on the perceivable performance of

a file system. Hence, both small and large files are used

in our evaluation. Finally, we analyze the compression and

deduplication capability preserved by BIFS in Section V-C.

A. Operation throughput

The missing of locality and the eventual consistency model

of S3 penalize the BIFS performance. However, a cloud-based

storage solution should be able to overcome these constraints

and achieve acceptable performance. We want to determine

the raw performance in terms of throughput. We designed a

simple benchmark program which measures the throughput of

sequential read, sequential write, file creation, and file deletion

of BIFS.

In the test for file creation and deletion, our benchmark

program creates 10,000 empty files and deletes them.

The measurement of our benchmark program (Table I)

shows that BIFS provides acceptable performance as an

Internet-based file system using cloud storage as backend.

B. Performance comparison

We use Bonnie++ and PostMark benchmark programs to

evaluate the performance of the BIFS, and compare it with

several existing solutions including S3FS, NFS, GlusterFS,

and MooseFS. Limited experiments are also conducted on

HDFS—a variant of GFS—to examine its read and write

throughput. However, its programming interface does not

allow us to run the Bonnie++ and Postmark benchmark

programs on it. The S3FS, GlusterFS, MooseFS and NFS

client are mounted on the same testing computer as BIFS.
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Fig. 6. Bonnie++ results

a) Bonnie++: We use Bonnie++ to compare the speed of

BIFS and other file systems on read, write and seek operations.

In this test, Bonnie++ is configured to perform these operations

on a relatively large file. The results are shown in Figure 6,

and indicate an acceptable performance for BIFS.

We also installed the HDFS client on our testing computer

and set up a NameNode and a DataNode on the EC2 large

instances. As HDFS does not provide users the UNIX-like

file system interface and the existing FUSE-based solutions

for porting HDFS [30] on the local file system hierarchy

reduce its throughput, we do not evaluate it with Bonnie++

and Postmark. Instead, we “get” and “put” a large file from/to

HDFS to measure its throughput in the Internet-based en-

vironment. Our measurement shows that HDFS achieves a

reasonable performance of 5.1 MB/s for reading and 7.2 MB/s

for writing. Through the method for testing HDFS is quite

different from that for the other file systems, which made it

not comparable with the measurement results from Bonnie++,

this measurement of HDFS can provide some knowledge of

HDFS for the sequential read and write on large files.

b) PostMark: PostMark evaluates the performance of a

file system with a number of small files. We configure Post-

mark to create 20,000 files and perform 100,000 transactions

in 10 directories, which is the typical and recommended setting

for file system benchmarks [31]. The moderately large number

of files and the random-access transactions may cause a large

number of cache misses. Although S3FS is more stable than

several other cloud-based file systems we have tested, we

observed several faults in the experiment of S3FS. This is

caused by the eventual consistency of Amazon S3. In order to

compare the performance of S3FS, we reduce the test size to

200 files and 1,000 transactions for S3FS. In contrast, BIFS

eliminates this problem as described in Section IV. This also

shows the robustness of BIFS.

The test results (Figure 7) show that, existing solutions

are not optimized for small files across a wide-area network.

Meanwhile BIFS provides an acceptable performance on this

workload because of the optimized caching scheme and the

partial locality mechanism.

C. Compression and deduplication opportunities

We are interested in verifying the compression and dedu-

plication capability that the bit-interleaving process preserves
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Fig. 8. Number of common bit sequences in two versions of the “/ker-
nel/mutex.h” file in the Linux kernel

after the bit-level slicing and re-ordering. Using BIFS, is it

still possible for a cloud storage provider to perform efficient

compression and bit-level deduplication across multiple users’

data? In this part, we answer this question by simulating the

compression and bit-level deduplication with simple compres-

sion tools. More complex and efficient compression and bit-

level deduplication mechanisms can be implemented by the

cloud storage service provider to further reduce the storage

space consumption.

Figure 8 shows the matching bit sequences in the two

slightly different files (“/kernel/mutex.h” file in two versions of

Linux kernels) with the length of the sequences varying from

6 bits to 32 bits. Our results show that the bit-interleaving

process can preserve common bit sequences in the two files.

After bit-interleaving, the files share 60% as many common

bit sequences as those in the clear. In contrast, in the files

encrypted by AES or DES, the number of long common bit

sequences decreases dramatically.

Retaining common bit sequences provides opportunities for

compression. We examine whether these tools may take this

advantage. We store the two versions of “/ipc” directory from

different Linux kernels in one volume, and transform the

volume with AES, DES, and bit-interleave process. We use

five compression tools—7-zip,bzip2, gzip, rar and zip—to

compress the volume with their best compression configu-

ration. The experiment results suggest that the compression

rate of the volume transformed with bit-interleave process is

1.3 to 2.3 times higher than those transformed with AES or

DES. This shows that the bit-interleave process is effective

in retaining some structural regularities in user files, which

makes BIFS potentially capable of effective compression and

bit-level deduplication.

VI. RELATED WORK

With the advent of datacenters and globalized computing

application systems, a number of distributed file systems have

been implemented to store very large data sets. Ghemawat

et al. designed GFS to provide a scalable file system with

very high throughput on a constellation of commodity PC

servers [1]. The MooseFS [32], Lustre [33], Ceph [34] and

HDFS [35] follow a similar architecture, which comprises one

or multiple active master nodes and a large number of “chunk

servers”. Along another direction, GlusterFS [36] keeps the

server simple: the server exports an existing file system and

leaves it up to client-side translators to structure the store.

These scalable file systems can potentially manage petabytes

of data in datacenters or enterprise IT facilities. However,

they cannot provide adequate privacy protection to end users.

The user data are exposed to whoever can access the storage

media, and many such file systems overlay on local Linux file

systems [1], [37], making it technically easy for unauthorized

users to examine private data. BIFS complements these file

systems by providing strong privacy protection on uncontrolled

public storage.

Traditionally, data privacy is protected by either restricting

the access or anonymizing the data. Access restriction can

be achieved by encryption, mandatory access control, or dis-

cretionary access control. However, the access control cannot

protect data from those who can read the physical sectors on

the hard drives. It is technically possible to employ client-side

cryptography to protect user data on public online storage.

The SWALLOW file system [38], for example, encrypts files

on the client side before uploading them to a remote server.

Blaze designed Cryptographic File System (CFS) [39], which

encrypts not only file data but also the more sensitive meta-

data. Farsite [40], SCARED [41], and SUNDR [42] ensure

the secrecy of file content with cryptographic techniques on

potentially untrusted nodes.

However, encryption incurs noticeable computational over-

head, and deprives deduplication and compression opportuni-

ties. Though it is possible to use file specific keys to generate

identical ciphertexts (convergent encryption) [15], [16], such

approaches can neither provide the required privacy protection

strength nor handle the common case of files with slight

variations. For data with minor differences, the encryption keys

generated from the file contents become different, which result

in the different ciphertexts that cannot be compressed. More-

over, the convergent encryption approach introduces additional

overhead on the key storage and management. In contrast,

BIFS follows the principle of “re-order, not substitute” so

that not only is the computational overhead reduced, but also

regularity in user data is preserved to facilitate compression

by cloud storage providers across multiple users’ data.

VII. CONCLUSION

Focusing on the protection of on-disk state, BIFS takes a bit-

inter-leaving approach to providing strong privacy protection.

Implementing BIFS in a Linux client and Amazon S3 storage

configuration, we evaluate the performance of BIFS, and prove
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that a file system can protect user privacy, provide reasonable

performance, yet allow storage system to conduct a certain

level of compression.
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