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Abstract—MapReduce is arguably the most successful par-
allelization framework especially for processing large data sets
in datacenters comprising commodity computers. However,
difficulties are observed in porting sophisticated applications
to MapReduce, albeit the existence of numerous parallelization
opportunities. Intrinsically, the MapReduce design allows a
program to scale up to handle extremely large data sets, but
constrains a program’s ability to process smaller data items and
exploit variable-degrees of parallelization opportunities which
are likely to be the common case in general application. In this
paper, we analyze the limitations of MapReduce and present the
design and implementation of a new lightweight parallelization
framework, MRlite. MRlite can efficiently process moderate-
size data with dependences among numerous computational
steps. In the mean time, the parallelization on each step
emulates the MapReduce model. Hence, the MRlite framework
can also scale up for large data sets if massive parallelism with
minimal dependence exists. MRlite can significantly improve
the flexibility and parallel execution performance for a number
of typical programs. Our evaluation shows that MRlite is one
order of magnitude faster than Hadoop on problems that
MapReduce has difficulty in handling.

Keywords-Distributed computing; Parallel architectures

I. INTRODUCTION

MapReduce [1] is arguably the most successful paral-
lelization framework used in datacenters comprising com-
modity computers [2]. The open-source variant of MapRe-
duce, Hadoop [3], has seen active development activities and
increasing adoption. Many cloud computing services provide
MapReduce functions [4], and the research community uses
MapReduce and Hadoop to solve data-intensive problems
in bioinformatics, computational finance, chemistry, and
environmental science [5][6][7][8].

On the other hand, the MapReduce model has its discon-
tents. DeWitt et al. argues that MapReduce is much less so-
phisticated or efficient than parallel database query systems
[9]. It is pointed out that the MapReduce model imposes too
strong assumptions on the dependence relation among data,
and the correctness often depends on the commutativity,
associativity, and other properties of the operations [10].
Others point out that the unreliable communication model
and retry mechanisms are far from being satisfactory, and the
master node can easily become a single point of failure. The
performance study on MapReduce-based algorithms exhibits
mixed results [5]. Finally, the recently granted MapReduce

patent raises question on the long-term viability of using this
parallelization mechanism in open environments [11].

We argue, however, that the facts and observations
above do not reveal the real limitation of the MapReduce
technology–they are either not significant enough to taint
the technical merits of MapReduce, or not technical issues
at all. In addition to the capability of exploring massive
parallelism, the MapReduce framework has its generality to
make it attractive to a wide class of analytics applications.
Otherwise, it would not have been used for many years as
a fundamental piece of software in the Google architecture,
which is a complex system solving many challenging prob-
lems [2].

The intrinsic limitation of MapReduce is, in fact, the
“one-way scalability” of its design. The design allows a
program to scale up to process very large data sets, but
constrains a program’s ability to process smaller data items.
The one-way scalable design reflects assumptions made in
a design context where large data sets were the dominating
challenges, and affects several important design choices in
the MapReduce framework.

While the one-way scalability was a legitimate choice
when MapReduce was initially designed, it introduces severe
difficulty in extending this programming framework to more
general computation. It has become imperative to design a
new parallelization framework that is not only scalable but
also flexible and generally applicable as cloud computing
evolves to cover more dynamic, interactive, and semantic-
rich applications, such as multiple-user collaborative appli-
cations [12], scientific computing, development tools, and
commercial applications [13].

In this paper, we use a specific case to probe the limitation
of MapReduce, and design a new lightweight parallelization
framework to mitigate the one-way scalability problem and
improve the system performance. The probing case is a
distributed compilation tool, and the new parallelization
framework is called “MRlite”, which can efficiently scale
down to process moderate-size data. Our evaluations on
MRlite show that it is more than 12 times faster than Hadoop
in the distributed compiling workload.

The rest of this paper is organized as follows. Section II
discusses related work. Section III describes the probing case
and our evaluation on it. Section IV presents the design of



Figure 1. The architecture of mrcc

MRlite. Section V describes the prototype and the evaluation
result of MRlite. We give a brieve conclusion in Section VI.

II. RELATED WORK

MapReduce is initially designed and implemented by
Google for processing and generating large data sets [1].
Solutions to a wide class of real world problems can
be expressed in this model. MRlite subsumes the parallel
execution capability of MapReduce so that the problems
handled by MapReduce can also be solved by MRlite. In
addition, MRlite can handle workloads that MapReduce
cnanot efficiently process.

The open-source variant of MapReduce, Hadoop [3], as
well as its underlying data persistency layer, HDFS [14],
which is loosely modelled after GFS [15], has seen active
development and increasing adoption. Hadoop also has the
“one-way scalability” limitation in its design. Different
design choices are made in MRlite, which mitigate the “one-
way scalability” problem.

Dryad is another distributed execution engine which al-
lows an application to specify an arbitrary “communication
DAG (directed acyclic graph)” [16]. Dryad also allows one
vertex in the graph to consume multiple inputs and generate
multiple outputs. DryadLINQ compiles the LINQ (a set of
.NET constructs for queries) [17] programs into a distributed
Dryad execution plan which can be executed directly on
Dryad [10]. MRlite does not use the DAG based approach.

The limitation of MapReduce is also manifested in prob-
lems with large data sets. Chen et al. points out that it
is tricky to achieve high performance for programs us-
ing Mapreduce, although implementing a MapReduce pro-
gram is easy [18]. MRlite’s programming interface and
lightweight design help developers explore more potential
parallelization opportunities in solving a wider range of
problems.

III. A CASE STUDY

To probe the limitation of the MapReduce framework,
we design mrcc [19], a distributed compilation system,
and examine its performance and overhead. MapReduce is
not designed for the compilation workload which contains
moderate-size data with complex dependency. We choose the
compilation workload to probe the limitation of MapReduce.

Meanwhile, a large class of applications share the features
of compilation workload, such as variable-size data and de-
pendency among them, and variable degree of parallelization
at different algorithmic steps.

mrcc consists of one master node that controls the compi-
lation job and many slave nodes that handle the compilation
tasks as shown in Figure 1.

When one project is compiled on the master node, make
builds the dependency tree for this project, and invokes
multiple mrcc program instances to compile multiple source
files in parallel. Hence, the parallelization are leveraged by
make invoking multiple concurrent mrcc instances. Each
mrcc instance runs one compilation task on a slave node.
A slave node is one of the worker machines that receive
map/reduce tasks from MapReduce master.

When conducting remote compilation on a slave node,
mrcc preprocesses the source file, places a batch of prepro-
cessed source files into a network file system used by the
framework, then starts a compilation job on MapReduce.
The map operation of this MapReduce job is done by a
program called “mrcc-map”. Running on the slave node,
mrcc-map first retrieves the source file from the network file
system, then calls the compiler locally to process the source
file on the slave. After the compilation finishes, mrcc-map
places the object file which is the result of the compilation
back into the network file system. After the mrcc-map task
is finished, mrcc on the master node retrieves the object
file from the network file system and places it into the
master node’s local file system. After one batch of files
are compiled, make continues to release more files to be
compiled that depend on the completed ones.

A. Implementation

The mrcc compilation system consists of two core parts:
the main program mrcc which runs on the master node
and mrcc-map which runs on the slave nodes. mrcc is an
open-source project under the GNU General Public License,
version 2. The source files of mrcc can be downloaded from
[19]. The work flow of the mrcc program is shown in Figure
2.

mrcc forks the preprocessor process after scanning the
compiler arguments. The preprocessor inserts the header
file(s) into the source file so that the remote nodes can
assume a much simpler execution environment. mrcc then
places the preprocessed file into a network file system
and conducts remote compilation. When running mrcc on
Hadoop, we use Hadoop Streaming [20] which can run
MapReduce jobs with any executable or script to perform the
map or reduce operation. mrcc submits the job to Hadoop
and mrcc-map on the slave node is invoked by Hadoop to
perform the map operation.

mrcc-map is implemented as a program residing in local
directories of all the slave nodes because the mrcc-map
program does not change during the process of compiling



Figure 2. The work flow of mrcc

Table I
NODE CONFIGURATION

CPU Memory (GB) Number

mrcc master 4 2 1
Slaves 2 2 10
Hadoop or MRlite
master 2 2 1
NFS server 2 14 1

one project. This also makes it “easier” for the MapReduce
framework to handle the compilation tasks, and, hence, the
performance penalty we observe shall reflect more accu-
rately the intrinsic limitations of the methodology.

mrcc-map first parses its arguments to obtain the source
file name on the network file system and the compilation
arguments. mrcc-map then retrieve the preprocessed file
from the network file system. After that, mrcc-map calls the
local gcc compiler and passes the compilation arguments to
it. When gcc exits with a successful return value, mrcc-map
places the object file into the network file system and returns
immediately.

Upon the completion of all mrcc-map tasks, the Hadoop
Streaming job returns. mrcc obtains the object files from the
network file system and returns.

B. Performance of mrcc on Hadoop

We set up an experiment platform that consists of Xen
virtual machines. We isolate these virtual machines by
assigning each virtual machine except the mrcc master a
physical CPU core which contains two CPUs. The configu-
ration of the slave nodes are identical. Details of the node
configuration are listed in Table I. The Hadoop master node
and three slave nodes reside on one physical machine while
the other seven slave nodes is on top of another physical
machine. The mrcc master node is on top of the third
physical machine. The physical machines are connected by
a Netgear JG5516 1Gbps switch. The bandwidth between
two virtual machines on top of one physical machine is also

Table II
TIME FOR COMPILING PROJECTS USING GCC ON ONE NODE AND MRCC

ON HADOOP

Project Time for gcc Time for mrcc/Hadoop

Linux 48m56.2s 150m44.4s
ImageMagick 5m12.1s 10m52.7s
Xen tools 2m7.6s 23m38.9s

1Gbps.
We use mrcc to compile the Linux kernel 2.6.31.6,

ImageMagick 6.6.3-8, and Xen tools 4.0.0 on Hadoop to
examine the performance of Hadoop when it processes jobs
in which complex dependencies exist between tasks while
the input data files are also dynamically generated. The
Hadoop version is 0.20.2 [3].

Table II shows the performance data. The compilation
time using mrcc on 10 nodes is at least twice as long as
that on one node (sequential compilation). Further investi-
gation reveals that Hadoop takes more than thirty seconds
to complete one compilation task. We also measures that
Hadoop takes more than 20 seconds to finish one “null”
job even though the job does not do any work. Storing or
retrieving one file on the network file system takes at least 2
seconds while compiling one file on one node usually takes
less than 2 seconds. While such overheads are acceptable
in the special class of applications where relatively simple
processing logic is applied to a large number of independent
data, the prohibitive tasking and data transportation cost lim-
its the applicability of MapReduce/Hadoop in more general
workloads.

IV. DESIGN

The experimental results in Section III-B show that the
current design and implementation of the MapReduce frame-
work cannot provide the flexibility and efficiency required by
programs with numerous parallelizable steps, instead of one
massive parallelizable step. Hence, the current MapReduce
framework does not work effectively for a large class of
applications with not only sizable data but also non-trivial
application logic. Representing the “common” case in scien-
tific and business computing, such applications require the
programming framework to efficiently handle variable-size
data, support data dependence, and harness variable degrees
of parallelization with controlled latency.

To overcome the limitation of MapReduce, we have
designed and implemented MRlite, a lightweight paral-
lelization framework that optimizes for not only massive
parallelism, but also low latency to provide a more general
and flexible parallel execution capability in cloud computing
environments. The data in a complex computing system
are often dynamically generated, thus introducing depen-
dence among data. In fact, “data with dependence” shall be
considered the common case in general applications. Such



Figure 3. The architecture of MRlite

dependence naturally divides the processing into numerous
steps to be taken in order, but each step may have sufficient
parallelism to be exploited. The key is, consequently, to
significantly reduce the overhead in data transportation and
task management so that most of the parallelizable steps can
invoke the parallelization mechanism, with the performance
gain from parallel execution outweighing the latency induced
by the overheads.

A. Architecture

The MRlite system consists of four parts as shown in
Figure 3: the MRlite master, MRlite slaves, the NFS server
in memory, and the MRlite client.

The MRlite master controls the parallel execution of tasks.
It accepts jobs from the MRlite client, and distributes the
tasks of the jobs to MRlite slaves. The MRlite slaves accept
and execute the tasks from the MRlite master. The MRlite
client is a library that can be linked to ther user application.
The MRlite client accepts the application’s parallelization
requests, and submits the job to the MRlite master. MRlite
includes an NFS server whose files are stored in one partic-
ipating node’s memory to profide a file system abstraction.
The NFS file system is mounted on the MRlite master node,
all the MRlite slave nodes, and the node on top of which
the user application runs.

B. Latency optimization

The MRlite master cooperates with the MRlite client to
minimize overhead and perform low-latency operations. In
addition, the MRlite framework includes a timing control
feature in its design as part of the low-latency execution
mechanism. The application can estimate a timeout limit
for the job and provide the timeout limit when it sends
parallelization request for one job to the MRlite client.
According to the timeout limit for the whole job, the MRlite
master provides a suggested timeout value for the tasks to
be executed on the slaves. In the current design, the timeout

value is specified by the programmer. In the future work,
we will extend this to a more flexible mechanism. After
receiving the task command from the master, the slave tries
its best to complete the task during the time slot specified by
the timeout value. The timing enforcement also take care of
reliability through retries. If one task times out, the master
treats it as a failed one and may retry that task on another
slave or just report the failure to the master. Similarly, a
timed-out job may be treated as a failed one by the MRlite
client, and the client may retry the job for a certain number
of times or report the failure to the application according
to that job’s configuration. The application logic ultimately
decides how to proceed when a job fails.

Besides the execution time enforcement, the MRlite mas-
ter submits tasks to slaves without sophisticated queueing
to maximize the possibility of finishing the job within the
timeout limit. As there are dependences between jobs and
among map and reduce tasks, the master submits the tasks
as soon as the dependence is resolved.

The latency caused by the run-time overhead in each
step may become critical when processing moderate data
sets though it may not be a concern for processing a huge
amount of data. Unlike the Hadoop design, MRlite uses a
run-time daemon and thread pools to support the operations
of the master and the slaves. This design reduces the cost of
creating a process every time a job request or task request
is issued. As the multi-thread and multi-core technology is
widely available in modern computing platforms, we believe
it is a pleasantly acceptable cost to dedicate one thread for
each task on a slave and one thread for managing a job on
the master.

Data transportation is an important aspect in distributed
computing. In our lightweight parallelization framework, it
is convenient to provide a distributed file system to store
data, but we only store intermediate data files and the run-
time data in the network file system. The design choice on
the network file system implementation must balance the
performance and usability. MRlite includes an NFS server,
which runs on one participating node, to provide a file
system abstraction, and mount the NFS file system on the
MRlite master, all MRlite slaves, and the MRlite clients.
The NFS server rides on a tmpfs file system [21], a virtual
memory file system in Linux, so that the I/O speed of the
NFS directory is as fast as operations in memory. This
design choice reflects the observation that modern gigabit
and 10 gigabit NICs provide comparable throughput bewteen
networked computers to the I/O bandwidth between memory
and hard drives. To maximize the I/O speed of the network
file system, we do not duplicate the intermediate files as
some distributed file systems do [15].

In the current design of MRlite, data persistency is sup-
posed to be provided by a separate layer of data storage. The
software based reliability through multiple-way replication
is not included in MRlite since these are not the focus



of this work, and solutions that provide these features
already exist [14][15]. Replication can potentially increase
the serving bandwith of read operations, at the cost of
first increasing the cost of writing operations. Both GFS
and HDFS employs 3-way replication [14][15] to improve
concurrency and reliability. In our experiments, it has not
been observed that the lack of 3-way serving bandwidth
limits the parallelization capability or the overall application-
level performance when the network bandwidth is sufficient.
Nevertheless, the MRlite architecture does not prohibit the
addition of a replicated data storage, given that intermediate
data files are still stored on and served from the low-latency
network file system.

C. Programming interface

The MRlite client is designed as a library that can be
compiled and linked to the user application. It provides a
simple API so that the application developers can use the
parallel computing capacity by simply calling a function.
The developer can define the map program, the reduce
program, how many map tasks and reduce tasks should
be invoked, the input data directory/file, the output data
directory/file and the time out value for the job. The MRlite
client parses the application’s parallelization requests, and
submits the job to the MRlite master with the options
specified in the API.

V. PROTOTYPE AND EVALUATION

We have prototyped the MRlite parallelization service,
and implemented mrcc on MRlite. In this section, we
discuss the implementation details of MRlite, and report the
evaluation results of mrcc on MRlite.

A. Implementation

The MRlite jobs are represented as sets of native Linux
applications written in any programming language of choice.
After each job is split into numerous tasks, each task is
executed as a Linux program by one of the MRlite slaves.

At each parallelizable step, the MRlite framework dis-
patches a group of concurrent tasks, emulating the MapRe-
duce model inspired by list primitives in Lisp. The tasks
executed on MRlite slaves are defined as map and reduce
tasks, with reduce tasks aggregating the intermediate results
generated by the map tasks. It worths noting that we do not
restrict map and reduce tasks to use key/value pairs. The
MRlite slaves monitor the tasks’ execution and report the
execution’s status and return values to the MRlite master.

There are 7 steps during the process of executing one job
as shown in Figure 3:

1) The application places input data files to the input NFS
directory.

2) The application submits the MapReduce job to the
MRlite client.

Table III
COMPARISON OF SPEEDUPS OF MRCC ON HADOOP AND MRLITE

Speedup Speedup MRlite
on Hadoop on MRlite vs. Hadoop

Linux 0.32 5.8 17.9
ImageMagick 0.48 6.2 13.0
Xen tools 0.09 2.0 22.0

Figure 4. Execution time for compiling projects

3) MRlite client accepts the job, and submits it to the
MRlite master.

4) The MRlite master submits tasks of the job to slaves
(4.1), and waits for slaves to respond (4.2). Perform
steps 4.1 and 4.2 for all tasks.

5) The MRlite master sends a success or fail message
back to MRlite client.

6) MRlite client returns to the application with a return
value that represents the result.

7) The application retrieves the output data files from the
output NFS directory.

B. Evaluation

Because MRlite is a general parallelization framework,
we can port the mrcc program to MRlite, and compare
the performance with mrcc on Hadoop using the workloads
as described in Section III-B with complex dependencies
existing among tasks and some input data files dynamically
generated. This evaluation examine MRlite’s ability to scale
“down” to handle moderate-size data, mixed sequential and
parallel work flow, and latency-aware tasks.

Most of the components in the mrcc/MRlite implementa-
tion are identical to those in the Hadoop based implemen-
tation except the parts invoking programming interface. The
configurations of the nodes and the client nodes are listed
in Table I. The MRlite platform has the same number and
hardware configuration of slave nodes as Hadoop in Section
III-B.

Figure 4 shows the evaluation results. The compilation
of the three projects using mrcc on MRlite is much faster
than compilation on one node, with a speedup of at least 2
and the best speedup reaches 6. Table III lists the speedup
mrcc achieves on Hadoop and MRlite, and shows that the



average speedup of MRlite is more than 12 times better
than that of Hadoop. This comparison shows that the MR-
lite is more effective than MapReduce for workloads with
numerous computational steps where each step may have
parallelization opportunities. From the result we also find
that a project that is easier (a higher speedup) for mrcc
on Hadoop to compile is easier for mrcc on MRlite. When
compiling the “easier” project such as ImageMagick, mrcc
on MRlite can achieve better speedup than mrcc on Hadoop.

The evaluation shows that MRlite is one order of mag-
nitude faster than Hadoop on problems that MapReduce
has difficulty in handling. The MRlite framework can still
handle the massive parallelism with simple dependency as
MapReduce does. MRlite shows that we can implement
a flexible and efficient parallelization framework which
programs can easily invoke to handle both large and small
data sets.

VI. CONCLUSION

In this paper, we use the distributed compilation case to
probe the limitation of MapReduce. The probing case shows
that the overhead of Hadoop is too high for mrcc and the
performance of mrcc on Hadoop is far from satisfactory.

We design MRlite, a new lightweight parallelization
framework, to mitigate the one-way scalability problem
and improve the system performance. The evaluation result
shows that MRlite can efficiently process moderate-size data
and handle data dependence. The MRlite framework can
still handle the massive parallelism with simple dependency.
The design significantly improves the parallel execution
performance for general applications.
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