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ABSTRACT

As cloud and big data computation grows to be an increasingly important paradigm, pro-

viding a general abstraction for datacenter-scale programming has become an imperative re-

search agenda. Researchers have proposed, designed and implemented various computation

models and systems on different abstraction levels, such as MapReduce, X10, Dryad, Storm

and Spark. However, many abstractions expose the distributed detail of the platform to the

application layer, and lead to increased complexity in programming, decreased performance,

and, sometimes, loss of generality. At the data substrate layer, traditional cloud computing

technologies, such as MapReduce, use disk-based file systems as the system-wide substrate

for data storage and sharing. A distributed file system provides a global name space and

stores data persistently, but it also introduces significant overhead. Several recent systems

use DRAM to store data and tremendously improve the performance of cloud computing sys-

tems. However, both our own experience and related work indicate that a simple substitution

of distributed DRAM for the file system does not provide a solid and viable foundation for
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data processing and storage in the datacenter environment, and the capacity of such systems

is limited by the amount of physical memory in the cluster.

To support general, efficient, flexible, and concurrent application workloads with sophis-

ticated data processing, we present programmers an illusion of a big virtual machine built on

top of one, multiple or many compute nodes and unify the physical memory and disks of the

nodes to form a globally addressable data substrate. We design a new instruction set archi-

tecture, i0, to unify myriads of compute nodes to form a big virtual machine called MAZE

where thousands of tasks run concurrently in VOLUME, a large, unified, and snapshotted

distributed virtual memory. i0, MAZE and VOLUME form the foundation of the Layer Zero

systems which provide a general substrate for cloud computing. i0 provides a simple yet

general and scalable programming model. VOLUME mitigates the scalability bottleneck of

traditional distributed shared memory systems and unifies the physical memory and disks on

many compute nodes to form a distributed transactional virtual memory. VOLUME provides

a general memory-based abstraction, takes advantage of DRAM in the system to accelerate

computation, and, transparently to programmers, scales the system to process and store large

datasets by swapping data to disks and remote servers. Along with the efficient execution

engine of MAZE, the capacity of a MAZE can scale up to support large datasets and large

clusters.

We have implemented the Layer Zero systems on several platforms, and designed and

implemented various benchmarks, graph processing and machine learning programs and

application frameworks. Our evaluation shows that Layer Zero has excellent performance

and scalability. On one physical host, the system overhead is comparable to that of traditional

VMMs. On 16 physical hosts, Layer Zero runs 10 times faster than Hadoop and X10. On

160 physical compute servers, Layer Zero scales linearly on a typical iterative workload.
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CHAPTER 1

INTRODUCTION

Cloud computing is an emerging computing paradigm, which is increasingly popular and

strongly promoted in the industry in recent years. Nowadays, the most popular applications

are Internet services with millions of users and the computation is large and complex. Cloud

computing becomes a promising model to support processing these large datasets housed on

clusters with commodity hardware.

1.1 Background and motivation

Cloud computing provides the users massive computing resources which are available on de-

mand and cloud-based computation is becoming increasingly important today. With almost

ubiquitous Internet accesses, users can store data and conduct a large part of their compu-

tation in datacenters, and more and more applications run in the cloud. However, writing

efficient distributed parallel applications is complex and challenging.

1.1.1 Organization of computation

Virtualization is a fundamental component in cloud technology. Particularly, ISA-level vir-

tual machine monitors (VMM) are used by major cloud providers for packaging resources,

enforcing isolation [1, 16], and providing underlying support for higher-level language con-

structs [21]. However, the traditional VMMs are typically designed to multiplex a sin-

gle physical host to be several virtual machine instances [25, 62, 88]. Though manage-

ment or single system image (SSI) services can coordinate multiple physical or virtual

hosts [30, 74, 88], they fall short of providing the functionality and abstraction that allow
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users to develop and execute programs as if the underlying platform were a single big “com-

puter” [27]. Extending traditional ISA abstractions beyond a single machine has only met

limited success. For example, vNUMA extends the IA-64 instruction set to a cluster of ma-

chines [33], but finds it necessary to simplify the memory semantics and encounters difficulty

in scaling to very large clusters.

On the other hand, exposing the distributed detail of the platform to the application layer

leads to increased complexity in programming, decreased performance, and, sometimes, loss

of generality. In recent years, application frameworks [42, 59] and productivity-oriented par-

allel programming languages [23, 34, 78, 92] have been widely used in cluster-wide com-

putation. MapReduce and its open-source variant, Hadoop, are perhaps the most widely-

used framework in this category [67]. Without completely hiding the distributed hardware,

MapReduce requires programmers to partition the program state so that each map and re-

duce task can be executed on one individual host, and enforces a specific control flow and

dependence relation to ensure correctness and reliability. This leads to a restricted program-

ming model which is efficient for “embarrassingly parallel” programs, where data can be

partitioned with minimum dependence and thus the processing is easily parallelizable, but

makes it difficult to support sophisticated application logic [47, 67, 80, 89]. The language-

level solutions, such as X10 [34], Chapel [31] and Fortress [23], are more general and give

programmers better control over the program logic flows, parallelization and synchroniza-

tion, but the static locality, programmer-specified synchronization, and the linguistic artifacts

influence such solutions to perform well with one set of programs but fail to deliver perfor-

mance, functionality, or ease-of-programming with another. It remains an open problem

to design an effective system architecture and programming abstraction to support general,

flexible, and concurrent application workloads with sophisticated processing.

1.1.2 Data substrate

Modern cloud and big-data processing systems rely on high-performance computation in

datacenters. Each datacenter contains one or more clusters composed of a large number of
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compute servers and a high-bandwidth interconnect, both built upon commodity hardware

but often customized. Programming such a large loosely-coupled system is, however, very

challenging.

A major cause of the limitation is the way current cloud systems store, distribute, ma-

nipulate and persist data. Traditionally, cloud systems use the file system abstraction as the

basic system substrate for storing data and distributing them to compute nodes for process-

ing. The MapReduce framework, for instance, is built on the GFS file system [51], and

assisted by the local file systems on individual compute nodes for servicing input and inter-

mediate data. Similarly, Hadoop, the open-source variant of MapReduce, relies on HDFS as

the data substrate [2]. This enables the system to scale, but makes it slow and difficult to sup-

port interactive, real-time or sophisticated computation. Although key/value and table based

abstractions, which are typically built upon the file system [32, 44], are often provided to

programmers, disk-based technology is still the foundation for data storage and exchange in

cloud systems. Not surprisingly, the file system I/O increases the overhead of data accesses,

and makes the system operations intrinsically high-latency. This fact, in turn, invites system

designers to assume high latency in many system design points and favor high throughput

more than low latency, resulting in systems tailored for large offline data analytics where

input and intermediate data can be naturally partitioned but unsuitable for many other appli-

cations and making the system increasingly slow.

The reliance on the file system was a reasonable design choice when hard drives were

the only economical random-access device for storing hundreds of gigabytes of data [26].

However, the hardware cost structure and technological context today have been dramati-

cally different from those constraining designers a decade ago. Along with several recent

research initiatives, we believe that a memory-based abstraction is viable and can signif-

icantly enhance the programmability and performance of cloud computing systems. In

2009, Phoenix showed MapReduce computation can use shared memory on a multicore

system [91]. In 2010, MRlite implemented in-memory MapReduce computation on multiple

compute servers [67], RAMCloud proposed to build DRAM-based storage [77], and Spark

is proposed for in-memory computation across a number of compute servers [95]. Today
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several DRAM-based cluster computing systems, including DVM [69, 70], RAMCloud [76]

and Spark/RDD [94], have been implemented and exhibited significant advantages in effi-

ciency and performance.

However, a simple substitution of DRAM for the file system abstraction cannot provide

the functionality and viability required for a solid data substrate on the datacenter platform.

Both our own experience and related work indicate that pure DRAM-based systems have the

following limitations in comparison to disk-based file systems.

• Cost and scalability: Although the price of DRAM has been sharply reduced in the

recent decade, so does the price of hard drives. Today the cost of DRAM is still

two orders of magnitude higher than that of hard disks for the same capacity. For

example, a representative configuration of RAMCloud organizes 64TB storage using

1000 servers [77]. The unit cost, $60/GB based on listing prices, is at least 60 times

higher than that of disks. At the same cost, a disk-based system can easily provide

4PB storage capacity.

• Persistency: A file system stores data persistently but DRAM is volatile. While repli-

cating data in the physical memory of multiple servers can emulate persistent data

storage, such mechanisms must span wide geographic regions for it to be resilient to

correlated faults, such as power outage in a city. The cost of long-distance replication

is concerning, and latency multiplies even for in-datacenter replication.

• Semantic gap: The role of the file system in the cloud computing technology is, in fact,

much wider than providing storage. It exposes a global name space for inter-process

communication, enforces atomicity for data writes, and may assist in the concurrency

control of the system. For example, multiple tasks on the Google cluster can exchange

data in the GFS name space, and MapReduce uses GFS’ atomic rename to implement

idempotent reduce semantics. Such file system semantics are sometimes subtle, but

they are crucial to the correctness of the computation in a large distributed system.

Current DRAM-based storage systems do not provide such semantics.
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Figure 1.1: Layer Zero technologies

We believe that the memory-based abstraction can indeed significantly enhance the ca-

pability and performance of cloud computing systems, but the design shall construct a solid

data storage and exchange substrate with clearly-defined and useful semantics, and the ab-

straction does not necessarily fixate on only DRAM-based organizations. In fact, DRAM

and magnetic disks have their own unique advantages that complement each other’s, and

traditional virtual memory systems are an example of integrating the strengths of both to

achieve a memory abstraction that is “as fast as memory, as large as the disks”. Similarly,

a synergy of memory and hard disks, facilitated by today’s high-bandwidth network, will

provide a fast, scalable and cost-effective way to store and transport data in a cluster.

1.2 Contributions

As discussed in Section 1.1, it is challenging both for the programmers to write cloud and

big data computation programs and for the execution engines to efficiently run them on a

large number of computers in datacenters, particularly when the applications evolve from

effortlessly parallelizable to sophisticated with complex dependence. This thesis presents

the work on the fundamental components of the Layer Zero technologies [12] as shown in
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Figure 1.1 to address the problem. This thesis work covers the design, implementation and

evaluation of i0, MAZE and VOLUME.

• i0 An instruction set for distributed computing. i0 abstracts the resource of many hosts.

• MAZE A big virtual machine that can execute programs in i0 across many physical

hosts.

• VOLUME A snapshotted distributed transactional virtual memory system where an

i0 program’s tasks execute in.

MAZE unifies many physical hosts in datacenters to a big virtual machine by i0 for

datacenter-scale programming. Layer Zero also provides languages and tools for designing

programs to run on MAZE. c0 is a variation of the C programming language with some ex-

tensions to support language-level multi-tasking and other mechanisms on i0 and MAZE [4].

cc0 [6] is a compiler for c0 and generates i0 code.

Specifically, this thesis work contributes in the following aspects.

i0 and MAZE Considering that ISAs indeed provide a clearly defined interface between

hardware and software and allow both layers to evolve and diversify, we believe it is effective

to unify the computers in a datacenter at the instruction level, and present programmers the

view of a big virtual machine that can potentially scale to the entire datacenter. The key is

to overcome the scalability bottleneck in traditional instruction sets and memory systems.

Hence, instead of porting an existing ISA, we design a new ISA i0, for cluster-scale com-

putation. Through its instruction set, memory model and parallelization mechanism, the i0

architecture presents the programmers an abstraction of a large-scale virtual machine, called

the MAchine ZEro (MAZE), which runs on a plurality of physical hosts inside a datacenter.

It defines an interface between the MAZE and the software running above it, and ensures

that a program can execute on any collection of computers that implement i0.

Different from existing VMMs (e.g., VMware [88], Xen [25], vNUMA [33]) on tradi-

tional architectures (e.g., x86), MAZE and i0 make design choices on the instruction set,
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execution engine, memory semantics and dependence resolution to facilitate scalable com-

putation in a dynamic environment with many loosely coupled physical or virtual hosts.

There are certainly many technical challenges in creating an ISA scalable to a union of thou-

sands of computers, and backward compatibility used to constrain the adoption of new ISAs.

Fortunately, the cloud computing paradigm presents opportunities for innovations at this ba-

sic system level—first, a datacenter is often a controlled environment where the owner can

autonomously decide internal technical specifications; second, major cloud-based program-

ming interfaces (e.g., RESTful APIs, RPC, streaming) require minimum instruction-level

compatibility; finally, there is only a manageable set of “legacy code”.

VOLUME and vMR To support the execution of programs written in or compiled to i0,

we design a distributed virtual memory system called VOLUME (Virtual On-Line Unified

Memory Environment) to unify physical memory and hard drives on many servers and con-

struct a uniform memory space shared by potentially a large number of tasks. VOLUME

handles the data in physical memory when possible, and can also smoothly scale to store

large data using disks. Importantly, scaling to handle large data and the optimization of

data flows are transparent to the programmers, hiding the fact that data reside on distributed

compute nodes. Moreover, VOLUME allows programs to make data persistent, and defines

memory operation semantics so that groups of memory operations behave in a way similar

to transactions with atomicity, isolation and persistency.

It is also our goal to make VOLUME general-purpose—it should be designed to support

a wide spectrum of computation, including not only offline data processing but also low-

latency, iterative, interactive and consistency-critical computations. As a general-purpose

substrate, VOLUME should readily benefit existing cloud computing technologies with-

out requiring creation of new instruments or an overhaul of the existing architecture—it

should be possible to substitute VOLUME for the existing data substrate in a technology,

e.g., MapReduce, and immediately enhance its functionality and performance. Designed

as a general-purpose data substrate, VOLUME can also replace the file system based data

substrate of other cluster computing systems, such as MapReduce, and accelerate computa-
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tion without losing the functionality, economy and scalability provided by the file systems.

To verify this and to improve the widely used MapReduce computation model, we have

designed a new MapReduce framework named vMR, which stores and exchanges data on

VOLUME. Maintaining the scalability to handle large datasets, vMR demonstrates a flexi-

bility to handle more complex computational logic and an efficiency comparable to recent

in-memory cluster computing systems.

A large computation in a datacenter can potentially scale to thousands of concurrent tasks

on hundreds of nodes. To the best of our knowledge, MAZE based on i0 is the first virtual

machine to organize large-scale parallel computation in datacenters, scale to many nodes

and datasets larger than the overall physical memory capacity and provide the abstraction

and mechanism for dependence representation at the task level and automatic dependence

resolution, and VOLUME is the first “virtual memory” system that coordinates transparent

memory accesses to distributed physical memory and disks at such a scale. The persistency

mechanism in VOLUME advances the memory-based cloud technology to systematically

specify, store and read persistent data. To the best of our knowledge, VOLUME is the first

system to provide transactional memory semantics on virtualized memory among hundreds

of computers.

We have implemented the i0, MAZE and VOLUME on several platforms, and designed

and implemented various benchmarks, graph processing and machine learning programs and

application frameworks. Our evaluation shows that Layer Zero has excellent performance

and scalability. On one physical host, the system overhead is comparable to that of tradi-

tional VMMs. On 16 physical hosts, Layer Zero runs 10 times faster than Hadoop and X10.

For in-memory sorting, Layer Zero is faster than both Hadoop and Spark. For k-means clus-

tering, Layer Zero scales linearly to 160 physical compute servers on the TH-1/GZ super-

computer. For processing of large datasets exceeding the overall physical memory capacity

of the cluster, Layer Zero is much faster than Hadoop/HDFS and delivers 6-11x speedups on

the adjacency list workload.
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1.3 Programming on Layer Zero

On Layer Zero, programmers can write programs at levels from i0, programming languages

like c0 to programming frameworks like vMR. In this section, we present a simple example

program adders.c0 in c0 to calculate sums in parallel to show how a program on MAZEs

looks like. We refer the readers to the online c0 tutorials [5] and the c0 manual [4] for more

details of programming in c0. More details of the designs and mechanisms of the MAZE

will be discussed in the following sections.

1 // Headers from libi0 ( https://github.com/layerzero/libi0 )

2 // that declare the ‘putlong()’ and ‘wrln()’ functions to print

3 // long integers and new lines.

4 #include <stdio.h>

5

6 // The input data shared among tasks. Tasks need to create snapshot on

7 // these variables by ‘using’ to use them.

8 // In this example, each of the 2 tasks sums 2 of the 4 integers.

9 long data[4];

10

11 // Task for adding 2 long integers

12 void adder(long id)

13 {

14 long start, result;

15 start = id * 2;

16

17 // read the input from data[] and calculate the sum

18 result = data[start] + data[start+1];

19

20 // print the result to STDOUT

21 putlong(result);

22 wrln();

23

24 // exit and commit

25 commit;

26 }
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27

28 void init()

29 {

30 long i;

31 for (i = 0; i < 4; i = i + 1) {

32 data[i] = i;

33 }

34

35 // Create 2 adder tasks to calculate sums in parallel.

36 // The used array segments are specified by ‘using’.

37 // After the init task exits and commits, the newly created

38 // adder tasks can be scheduled to execute in parallel.

39 runner adder(0) using data[0,,2];

40 runner adder(1) using data[3,,4];

41

42 // exit and commit

43 commit;

44 }

45

46 // main is a task. It is the first task started for a program.

47 void main()

48 {

49 // Create the init task to initialize data[0] to data[4] and

50 // create adder tasks.

51 // After the main task exits and commits, the newly created

52 // init task can be scheduled to execute.

53 runner init()

54 using data[0,,4];

55

56 // exit and commit

57 commit;

58 }

The main task is created by the MAZE as the starting point of the program. In this

program, the main task creates the init task and the init task creates 2 adder tasks to

calculate sums in parallel. Programmers can compile this program to i0 binary code by “cc0
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adders.c0 -o adders.bin” using the c0 compiler and run adders.bin on a MAZE.

As shown in the example, the grammar of c0 is like C with differences in the grammar

and programming model aspects. First, programs are organized as tasks which may execute

in parallel and a task commits changes at the end of its execution. Second, new tasks such as

adder are scheduled to execute only after the parent task such as init exits and commits.

Third, tasks are created by runner statements by specifying data structures like array seg-

ment data[0,,4] used by the tasks. This programming model may look different at the first

glance. However, the model is easy to get familiar with for programmers especially if they

have experience with database systems or transactional memory systems which also organize

operations on data as transactions. Importantly, this semantics and model enable the system

to scale to large clusters and present the programmers a view of a single computer.

1.4 Outline

The thesis is organized as follows. Chapter 2 surveys the related work. We show the limita-

tion of disk-based systems by a probing case in Chapter 3. Chapter 4 presents the design of i0

and MAZE. We discuss the design of VOLUME in Chapter 5. We show the implementation

of evaluation of MAZE and VOLUME in Chapter 6. Chapter 7 concludes the thesis. This

thesis includes materials and results from our previous published work [67, 68, 69, 70].
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CHAPTER 2

RELATED WORK

Many systems, programming frameworks, and languages are proposed and designed to ex-

ploit the computing power of constellations of compute servers inside today’s gigantic data-

centers and help the programmers design parallel programs easily and efficiently.

2.1 MapReduce-like systems

Dean et al. created the MapReduce programming model to process and generate large data

sets [42]. MapReduce relies on a restricted programming model so that it can automatically

run the programs in parallel and provide fault-tolerance while ensuring correctness. The

open-source variant of MapReduce, Hadoop [2], as well as its underlying data persistency

layer, HDFS [11], which is loosely modeled after GFS [51], has seen active development

and increasing adoption. Without completely hiding the distributed hardware, MapReduce

requires programmers to partition the program state so that each map and reduce task can

be executed on one individual host, and enforces a specific control flow and dependence

relation to ensure correctness and reliability. This leads to a restricted programming model

which is efficient for “embarrassingly parallel” programs, where data can be partitioned with

minimum dependence and thus the processing is easily parallelizable, but makes it difficult to

support sophisticated application logic [47, 67, 80, 89]. Dryad takes a more general approach

by allowing an application to specify an arbitrary “communication DAG (directed acyclic

graph)” [59].

While these frameworks are successful in large data processing, the restricted program-

ming model such as MapReduce is not general enough to cover many important applica-

tion domains and makes it difficult to design sophisticated and latency-sensitive applica-

tions [47, 67, 80, 89]. Building the DAG for Dryad applications is a non-trivial task to the
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programmers and automatic DAG generation is only seen implemented for certain high-level

languages.

The limitation of MapReduce is also manifested in problems with large data sets. Chen

et al. points out that it is tricky to achieve high performance for programs using MapReduce,

although implementing a MapReduce program is easy [36]. The large data processed are

usually stored and shared as files in distributed or local file systems. GFS is used as the

substrate of the MapReduce in Google’s datacenter. Over the past decades, the performance

of disks has not improved so quickly as the disk capacity has [77]. The disk performance

is becoming a bottleneck of the MapReduce-like systems, especially for workloads with

datasets of moderate sizes.

2.2 High-level languages

As another approach, high-level languages may help programmers write clearer, more com-

pact and more expressive programs on a cluster. High-level languages, such as Sawzall

and DryadLINQ implemented on top of programming frameworks (MapReduce and Dryad),

make the data-processing programs easier to design [78, 92]. However, these languages also

suffer from the limitation of the underlying application frameworks.

Charles et al. design X10 to write parallel programs in non-uniform cluster computing

system, taking both performance and productivity as its goals [34]. The language-level ap-

proach gives the programmers more precise control of the semantics of parallelization and

synchronization. However, the static locality, programmer-specified synchronization, and

the linguistic artifacts influence such solutions to perform well with one set of programs but

fail to deliver performance, functionality, or ease-of-programming with another.

2.3 Message passing and distributed shared memory

Different from the frameworks and languages that make the data communication transpar-

ent to programmers, message passing-based technologies [50] require that the programmer
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handle the communication explicitly [66]. This can simplify the system design and im-

prove scalability, but often imposes extra burden on programmers. It creates dichotomized

programming domains and requires the programmers to explicitly handle the complexity of

organizing the program logic around the APIs and filling any semantic gap. In contrast, the

distributed shared memory (DSM) keeps the data transmission among computers transpar-

ent to programmers [72]. The DSM systems, such as Ivy [65] and Treadmark [61], combine

the advantages of “shared-memory systems” and “distributed-memory systems” to provide a

simple programming model by hiding the communication mechanisms [72], but incur a cost

in maintaining memory coherence across multiple computers.

2.4 Shared-memory multiprocessor systems and single sys-

tem image

In contrast to the traditional ways of providing DSM in middleware which provide a limited

illusion of shared memory, vNUMA uses virtualization technology to build shared-memory

multiprocessor (SMM) system and provides a single system image (SSI) on top of worksta-

tions connected through an Ethernet network that provides “causally-ordered delivery” [33].

This also differs from widely used virtualization systems, such as Xen and VMware on

the x86 ISA, which divide the resources of a single physical host into multiple virtual ma-

chines [25, 88]. Both vNUMA and the emerging “inverse virtualization” [55] aim to merge

a number of compute nodes to be one larger machine. However, vNUMA is designed to be

used on small clusters and its scalability is limited by the ISA it used which is designed for

single computer with up to a moderate number of cores.

2.5 Large-scale in-memory data processing systems

Unifying physical memory from a cluster of servers is studied for many years. Examples

include distributed shared memory systems such as Ivy [65] and Treadmarks [61], vir-

tual machines, such as vNUMA [33] and DVM [70], operating system extensions, such as
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GMS [49], caching systems such as Memcached [14], and storage systems, such as RAM-

Cloud [77]. Researchers suggest using the physical memory from many servers in the dat-

acenters to create the storage system [77] and some MapReduce implementations, such as

Twister [46], Phoenix [80], MRlite [67] and EMR [81], make use of the physical mem-

ory on working nodes. Emerging data processing systems, such as Spark/RDD [94] and

Piccolo [79], handle the datasets using in-memory data structures and deliver higher perfor-

mance than file system based systems.

On the other hand, the capacity of the physical memory on the commodity servers are

far smaller than the disks’ and the storage capacity of these systems is consequently limited.

Although a memory-based storage system with large capacity can be built with a large num-

ber of servers, the cost is very high and the utilization of the processor resources on these

servers is possibly low most of the time.
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CHAPTER 3

LIMITATION OF DISK-BASED SYSTEMS

As discussed in Chapter 1, a major cause of the limitation of many current cloud systems is

the way they store, distribute, manipulate and persist data. In this chapter, we study the lim-

itation of the disk-based systems by a probing case on MapReduce and a new parallelization

framework and system processing data in memory.

MapReduce [42] is one of the most successful parallelization framework used in dat-

acenters comprising commodity computers [26]. The open-source variant of MapReduce,

Hadoop [2], has seen active development activities and adoption. Many cloud computing ser-

vices provide MapReduce functions [1], and the research community uses MapReduce and

Hadoop to solve data-intensive problems in bioinformatics, computational finance, chem-

istry, and environmental science [37][38][47][82].

On the other hand, the MapReduce model has its discontents. DeWitt et al. argues

that MapReduce is much less sophisticated or efficient than parallel database query systems

[45]. It is pointed out that the MapReduce model imposes too strong assumptions on the

dependence relation among data, and the correctness often depends on the commutativity,

associativity, and other properties of the operations [92]. Others point out that the unreliable

communication model and retry mechanisms are far from being satisfactory, and the master

node can easily become a single point of failure. The performance study on MapReduce-

based algorithms exhibits mixed results [38]. Finally, the recently granted MapReduce patent

raises question on the long-term viability of using this parallelization mechanism in open

environments [43].

We argue, however, that the facts and observations above do not reveal the real limitation

of the MapReduce technology–they are either not significant enough to taint the technical

merits of MapReduce, or not technical issues at all. In addition to the capability of exploring
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massive parallelism, the MapReduce framework has its generality to make it attractive to a

wide class of analytics applications. Otherwise, it would not have been used for many years

as a fundamental piece of software in the Google architecture, which is a complex system

solving many challenging problems [26].

The intrinsic limitation of MapReduce is, in fact, the “one-way scalability” of its design.

The design allows a program to scale up to process very large data sets, but constrains a

program’s ability to process smaller data items. The one-way scalable design reflects as-

sumptions made in a design context where large data sets were the dominating challenges,

and affects several important design choices in the MapReduce framework.

While the one-way scalability was a legitimate choice when MapReduce was initially

designed, it introduces severe difficulty in extending this programming framework to more

general computation. It has become imperative to design a new parallelization framework

that is not only scalable but also flexible and generally applicable as cloud computing evolves

to cover more dynamic, interactive, and semantic-rich applications, such as multiple-user

collaborative applications [7], scientific computing, development tools, and commercial ap-

plications [17].

We use a specific case to probe the limitation of MapReduce, and design a new lightweight

parallelization framework to mitigate the one-way scalability problem and improve the sys-

tem performance. The probing case is a distributed compilation tool, and the new paralleliza-

tion framework is called “MRlite”, which can efficiently scale down to process moderate-size

data. Our evaluations on MRlite show that it is more than 12 times faster than Hadoop in the

distributed compiling workload.

3.1 A case study

To probe the limitation of the MapReduce framework, we design mrcc [15], a distributed

compilation system, and examine its performance and overhead. MapReduce is not designed

for the compilation workload which contains moderate-size data with complex dependency.
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Figure 3.1: The architecture of mrcc

We choose the compilation workload to probe the limitation of MapReduce. Meanwhile,

a large class of applications share the features of compilation workload, such as variable-

size data and dependency among them, and variable degree of parallelization at different

algorithmic steps.

mrcc consists of one master node that controls the compilation job and many slave nodes

that handle the compilation tasks as shown in Figure 3.1.

When one project is compiled on the master node, make builds the dependency tree for

this project, and invokes multiple mrcc program instances to compile multiple source files

in parallel. Hence, the parallelization are leveraged by make invoking multiple concurrent

mrcc instances. Each mrcc instance runs one compilation task on a slave node. A slave node

is one of the worker machines that receive map/reduce tasks from MapReduce master.

When conducting remote compilation on a slave node, mrcc preprocesses the source file,

places a batch of preprocessed source files into a network file system used by the framework,

then starts a compilation job on MapReduce. The map operation of this MapReduce job is

done by a program called “mrcc-map”. Running on the slave node, mrcc-map first retrieves

the source file from the network file system, then calls the compiler locally to process the

source file on the slave. After the compilation finishes, mrcc-map places the object file which

is the result of the compilation back into the network file system. After the mrcc-map task is

finished, mrcc on the master node retrieves the object file from the network file system and
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Figure 3.2: The work flow of mrcc

places it into the master node’s local file system. After one batch of files are compiled, make

continues to release more files to be compiled that depend on the completed ones.

Implementation The mrcc compilation system consists of two core parts: the main pro-

gram mrcc which runs on the master node and mrcc-map which runs on the slave nodes.

mrcc is an open-source project under the GNU General Public License, version 2. The

source files of mrcc can be downloaded from [15]. The work flow of the mrcc program is

shown in Figure 3.2.

mrcc forks the preprocessor process after scanning the compiler arguments. The pre-

processor inserts the header file(s) into the source file so that the remote nodes can assume

a much simpler execution environment. mrcc then places the preprocessed file into a net-

work file system and conducts remote compilation. When running mrcc on Hadoop, we use

Hadoop Streaming [9] which can run MapReduce jobs with any executable or script to per-

form the map or reduce operation. mrcc submits the job to Hadoop and mrcc-map on the

slave node is invoked by Hadoop to perform the map operation.
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Table 3.1: Node configuration

CPU Memory (GB) Number

mrcc master 4 2 1

Slaves 2 2 10

Hadoop or MRlite

master 2 2 1

NFS server 2 14 1

mrcc-map is implemented as a program residing in local directories of all the slave nodes

because the mrcc-map program does not change during the process of compiling one project.

This also makes it “easier” for the MapReduce framework to handle the compilation tasks,

and, hence, the performance penalty we observe shall reflect more accurately the intrinsic

limitations of the methodology.

mrcc-map first parses its arguments to obtain the source file name on the network file

system and the compilation arguments. mrcc-map then retrieve the preprocessed file from

the network file system. After that, mrcc-map calls the local gcc compiler and passes the

compilation arguments to it. When gcc exits with a successful return value, mrcc-map places

the object file into the network file system and returns immediately.

Upon the completion of all mrcc-map tasks, the Hadoop Streaming job returns. mrcc

obtains the object files from the network file system and returns.

Performance of mrcc on Hadoop We set up an experiment platform that consists of Xen

virtual machines. We isolate these virtual machines by assigning each virtual machine except

the mrcc master a physical CPU core which contains two CPUs. The configuration of the

slave nodes are identical. Details of the node configuration are listed in Table 3.1. The

Hadoop master node and three slave nodes reside on one physical machine while the other

seven slave nodes is on top of another physical machine. The mrcc master node is on top

of the third physical machine. The physical machines are connected by a Netgear JG5516

1Gbps switch. The bandwidth between two virtual machines on top of one physical machine

is also 1Gbps.
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Table 3.2: Time for compiling projects using gcc on one node and mrcc on Hadoop

Project Time for gcc Time for mrcc/Hadoop

Linux 48m56.2s 150m44.4s

ImageMagick 5m12.1s 10m52.7s

Xen tools 2m7.6s 23m38.9s

We use mrcc to compile the Linux kernel 2.6.31.6, ImageMagick 6.6.3-8, and Xen tools

4.0.0 on Hadoop to examine the performance of Hadoop when it processes jobs in which

complex dependencies exist between tasks while the input data files are also dynamically

generated. The Hadoop version is 0.20.2 [2].

Table 3.2 shows the performance data. The compilation time using mrcc on 10 nodes

is at least twice as long as that on one node (sequential compilation). Further investigation

reveals that Hadoop takes more than thirty seconds to complete one compilation task. We

also measures that Hadoop takes more than 20 seconds to finish one “null” job even though

the job does not do any work. Storing or retrieving one file on the network file system takes

at least 2 seconds while compiling one file on one node usually takes less than 2 seconds.

While such overheads are acceptable in the special class of applications where relatively

simple processing logic is applied to a large number of independent data, the prohibitive

tasking and data transportation cost limits the applicability of MapReduce/Hadoop in more

general workloads.

3.2 MapReduce on a memory-based file system

The experimental results in Section 3.1 show that the current design and implementation

of the MapReduce framework cannot provide the flexibility and efficiency required by pro-

grams with numerous parallelizable steps, instead of one massive parallelizable step. Hence,

the current MapReduce framework does not work effectively for a large class of applications

with not only sizable data but also non-trivial application logic. Representing the “common”

case in scientific and business computing, such applications require the programming frame-
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Figure 3.3: The architecture of MRlite

work to efficiently handle variable-size data, support data dependence, and harness variable

degrees of parallelization with controlled latency.

To overcome the limitation of MapReduce, we have designed and implemented MRlite,

a lightweight parallelization framework that optimizes for not only massive parallelism, but

also low latency to provide a more general and flexible parallel execution capability in cloud

computing environments. The data in a complex computing system are often dynamically

generated, thus introducing dependence among data. In fact, “data with dependence” is the

common case in general applications. Such dependence naturally divides the processing into

numerous steps to be taken in order, but each step may have sufficient parallelism to be ex-

ploited. The key is, consequently, to significantly reduce the overhead in data transportation

and task management so that most of the parallelizable steps can invoke the parallelization

mechanism, with the performance gain from parallel execution outweighing the latency in-

duced by the overheads.
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Architecture The MRlite system consists of four parts as shown in Figure 3.3: the MRlite

master, MRlite slaves, the NFS server in memory, and the MRlite client.

The MRlite master controls the parallel execution of tasks. It accepts jobs from the

MRlite client, and distributes the tasks of the jobs to MRlite slaves. The MRlite slaves accept

and execute the tasks from the MRlite master. Implemented as a library that can be linked to

the user application, the MRlite client accepts the application’s parallelization requests, and

submits the job to the MRlite master. MRlite includes an NFS server whose files are stored

in one participating node’s memory to provide a file system abstraction. The NFS file system

is mounted on the MRlite master node, all the MRlite slave nodes, and the node on top of

which the user application runs.

Latency optimization The MRlite master cooperates with the MRlite client to minimize

overhead and perform low-latency operations. In addition, the MRlite framework includes

a timing control feature in its design as part of the low-latency execution mechanism. The

application can estimate a timeout limit for the job and provide the timeout limit when it

sends parallelization request for one job to the MRlite client. According to the timeout

limit for the whole job, the MRlite master provides a suggested timeout value for the tasks

to be executed on the slaves. In the current design, the timeout value is specified by the

programmer. After receiving the task command from the master, the slave tries its best to

complete the task during the time slot specified by the timeout value. The timing enforcement

also take care of reliability through retries. If one task times out, the master treats it as a failed

one and may retry that task on another slave or just report the failure to the master. Similarly,

a timed-out job may be treated as a failed one by the MRlite client, and the client may retry

the job for a certain number of times or report the failure to the application according to

that job’s configuration. The application logic ultimately decides how to proceed when a job

fails.

Besides the execution time enforcement, the MRlite master submits tasks to slaves with-

out sophisticated queueing to maximize the possibility of finishing the job within the timeout

limit. As there are dependences between jobs and among map and reduce tasks, the master
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submits the tasks as soon as the dependence is resolved.

The latency caused by the run-time overhead in each step may become critical when

processing moderate data sets though it may not be a concern for processing a huge amount

of data. Unlike the Hadoop design, MRlite uses a run-time daemon and thread pools to

support the operations of the master and the slaves. This design reduces the cost of creating a

process every time a job request or task request is issued. As the multi-thread and multi-core

technology is widely available in modern computing platforms, we believe it is a pleasantly

acceptable cost to dedicate one thread for each task on a slave and one thread for managing

a job on the master.

Data transportation is an important aspect in distributed computing. In our lightweight

parallelization framework, it is convenient to provide a distributed file system to store data,

but we only store intermediate data files and the run-time data in the network file system.

The design choice on the network file system implementation must balance the performance

and usability. MRlite includes an NFS server, which runs on one participating node, to

provide a file system abstraction, and mount the NFS file system on the MRlite master, all

MRlite slaves, and the MRlite clients. The NFS server rides on a tmpfs file system [84], a

virtual memory file system in Linux, so that the I/O speed of the NFS directory is as fast as

operations in memory. This design choice reflects the observation that modern gigabit and

10 gigabit NICs provide comparable throughput between networked computers to the I/O

bandwidth between memory and hard drives. To maximize the I/O speed of the network file

system, we do not duplicate the intermediate files as some distributed file systems do [51].

In the current design of MRlite, data persistency is supposed to be provided by a separate

layer of data storage. The software based reliability through multi-way replication is not

included in MRlite since these are not the focus of this work, and solutions that provide these

features already exist [11][51]. Replication can potentially increase the serving bandwidth

of read operations, at the cost of first increasing the cost of writing operations. Both GFS

and HDFS employs 3-way replication [11][51] to improve concurrency and reliability. In

our experiments, it has not been observed that the lack of 3-way serving bandwidth limits
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the parallelization capability or the overall application-level performance when the network

bandwidth is sufficient. Nevertheless, the MRlite architecture does not prohibit the addition

of a replicated data storage, given that intermediate data files are still stored on and served

from the low-latency network file system.

3.3 Prototype and evaluation

We have prototyped the MRlite parallelization service, and implemented mrcc on MRlite.

In this section, we discuss the implementation details of MRlite, and report the evaluation

results of mrcc on MRlite.

Implementation The MRlite jobs are represented as sets of native Linux applications writ-

ten in any programming language of choice. After each job is split into numerous tasks, each

task is executed as a Linux program by one of the MRlite slaves.

At each parallelizable step, the MRlite framework dispatches a group of concurrent tasks,

emulating the MapReduce model inspired by list primitives in Lisp. The tasks executed

on MRlite slaves are defined as map and reduce tasks, with reduce tasks aggregating the

intermediate results generated by the map tasks. It is worth noting that we do not restrict

map and reduce tasks to use key/value pairs. The MRlite slaves monitor the tasks’ execution

and report the execution’s status and return values to the MRlite master.

There are 7 steps during the process of executing one job as shown in Figure 3.3:

1. The application places input data files to the input NFS directory.

2. The application submits the MapReduce job to the MRlite client.

3. MRlite client accepts the job, and submits it to the MRlite master.

4. The MRlite master submits tasks of the job to slaves (4.1), and waits for slaves to

respond (4.2). Perform steps 4.1 and 4.2 for all tasks.
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Table 3.3: Comparison of speedups of mrcc on Hadoop and MRlite

Speedup Speedup MRlite

on Hadoop on MRlite vs. Hadoop

Linux 0.32 5.8 17.9

ImageMagick 0.48 6.2 13.0

Xen tools 0.09 2.0 22.0

5. The MRlite master sends a success or fail message back to MRlite client.

6. MRlite client returns to the application with a return value that represents the result.

7. The application retrieves the output data files from the output NFS directory.

Evaluation Because MRlite is a general parallelization framework, we can port the mrcc

program to MRlite, and compare the performance with mrcc on Hadoop using the workloads

as described in Section 3.1 with complex dependencies existing among tasks and some input

data files dynamically generated. This evaluation examine MRlite’s ability to scale “down”

to handle moderate-size data, mixed sequential and parallel work flow, and latency-aware

tasks.

Most of the components in the mrcc/MRlite implementation are identical to those in

the Hadoop based implementation except the parts invoking programming interface. The

configurations of the nodes and the client nodes are listed in Table 3.1. The MRlite platform

has the same number and hardware configuration of slave nodes as Hadoop in Section 3.1.

Figure 3.4 shows the evaluation results. The compilation of the three projects using

mrcc on MRlite is much faster than compilation on one node, with a speedup of at least 2

and the best speedup reaches 6. Table 3.3 lists the speedup mrcc achieves on Hadoop and

MRlite, and shows that the average speedup of MRlite is more than 12 times better than

that of Hadoop. This comparison shows that the MRlite is more effective than MapReduce

for workloads with numerous computational steps where each step may have parallelization

opportunities. From the result we also find that a project that is easier (a higher speedup)

for mrcc on Hadoop to compile is easier for mrcc on MRlite. When compiling the “easier”
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Figure 3.4: Execution time for compiling projects

project such as ImageMagick, mrcc on MRlite can achieve better speedup than mrcc on

Hadoop.

The evaluation shows that MRlite is one order of magnitude faster than Hadoop on prob-

lems that MapReduce has difficulty in handling. The MRlite framework can still handle the

massive parallelism with simple dependency as MapReduce does. MRlite shows that we

can implement a flexible and efficient parallelization framework which programs can easily

invoke to handle both large and small data sets.

3.4 Discussion

We use the distributed compilation case to probe the limitation of MapReduce. The probing

case shows that the overhead of Hadoop is too high for mrcc and the performance of mrcc

on Hadoop is far from satisfactory.

We design MRlite, a new lightweight parallelization framework, to mitigate the one-way

scalability problem and improve the system performance. The evaluation result shows that

MRlite can efficiently process moderate-size data and handle data dependence. The MRlite

framework can still handle the massive parallelism with simple dependency. The design

significantly improves the parallel execution performance for general applications.
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On the other hand, MRlite has its limitations and can not support general large-scale data

processing in datacenters. First, the datasets that MRlite can handle is limited by the capacity

of the physical memory of the NFS server node. Second, the memory-based NFS server does

not provide persistency. Third, the programming model of MRlite is not general enough for

sophisticated programs and imposes burden to programmers to resolve dependence among

phases of tasks.

In the following sections, we will discuss the design and implementation of Layer Zero

which efficiently handles data in-memory as MRlite does, and also provides a simple yet

general and scalable programming model and scalable data substrate with atomicity and

persistency support.
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CHAPTER 4

ORGANIZATION OF IN-MEMORY

COMPUTATION

In Chapter 3, we study the limitation of disk-based systems and show that, while significantly

improving the performance of computation, in-memory data processing imposes many chal-

lenges. To provide a general substrate to support datacenter-scale computation, we design

the Layer Zero components including i0, MAZE and VOLUME. In this chapter, we discuss

the organization of in-memory computation on i0 and MAZE. We will present the design of

VOLUME in Chapter 5.

As Layer Zero is an approach to supporting general computation in datacenters and

MAZE is the fundamental system of the Layer Zero technologies, the design of MAZE

has the following goals.

• General. MAZE should support the design and execution of general programs in

datacenters.

• Efficient. MAZE should be efficient and deliver high performance.

• Scalable. MAZE should be scalable to run on a plurality of hosts, execute a large

number of tasks, and handle large datasets.

• Portable. MAZE should be portable across different clusters with different hardware

configurations, networks, etc.

• Simple. It should be easy to program on MAZE; i0 should be simple to implement.

With the design goals stated, we revisit the approach and rationale of unifying the com-

puters in a datacenter at the ISA layer. The programming framework, language, and system
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call/API are also possible abstraction levels for large-scale computation. However, as afore-

mentioned, the frameworks and languages have their limitations and constraints. They fall

short of providing the required generality and efficiency. Using system calls/APIs to invoke

distributed system services can be efficient and reasonably portable. However, an abstrac-

tion on this level creates dichotomized programming domains and requires the program-

mers to explicitly handle the complexity of organizing the program logic around the system

calls/APIs and filling any semantic gap, which fails to provide the illusion of a “single big

machine” to the programmers and leads to a far less general and easy-to-program approach

than what we aim to design. The existing ISAs, designed for a single computer with up to a

moderate number of cores, can hardly provide the scalability required by the “machine” that

scales potentially to the datacenter size. On the other hand, the design of the Layer Zero is

motivated by the necessity of developing a next-generation datacenter computing technology

that overcomes several important limitations in current solutions. The MAZE should provide

the basic program execution and parallelization substrate in this technology, and should meet

all the goals on generality, efficiency, scalability, portability and ease-of-programming (with

compilers’ help). This leads us to choose the ISA layer to construct a unified computational

abstraction of the datacenter platform. To break the scalability bottleneck in traditional ISAs

and retain the advantages of generality and efficiency, we design the new ISA, i0, and build

the MAZE on this architecture.

4.1 System overview

The architecture of MAZE is illustrated in Figure 4.1. Many MAZEs can run in one physical

host as the traditional VMMs to multiplex the resources of the host, and a MAZE can run on

top of multiple or many physical hosts to form a big virtual machine in a datacenter.

System organization We abstract a group of computational resources including processor

cores and memory to be a resource container (RC). In the simplest form, an RC is a physical

computer. However, it can also materialize as a traditional virtual machine or other container
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Figure 4.1: Organization of 2 MAZEs on 3 physical hosts

structure, given the container provides an appropriate programming interface and adequate

isolation level. Although one RC is exclusively assigned to one MAZE during one period

of time, the RCs in one physical host may belong to one or more MAZEs and one MAZE’s

capacity can be dynamically changed by adding or removing RCs. Hence, the capacity

of a MAZE is flexible and scalable—a MAZE can share a single physical host with other

MAZEs, or include many physical hosts as its RCs.

A MAZE accommodates a set of tasks running in a unified address space. Although

MAZEs may have different capacity and the size of a MAZE can grow very large depending

on the available resources, the MAZEs provide the same architectural abstraction of a “single

computer” to programs through the i0.

The programs in MAZEs are in i0 instructions and a program running inside a MAZE

instantiates to be a number of tasks executing on many processor cores in many RCs. Inside

an RC, many tasks, each residing in one virtual processor container (VPC), can execute in

parallel. The VPC is a semi-persistent facility that provides various system functions to tasks

and a meta-scheduler (scheduler) to facilitate and manage tasks’ execution and the scheduler

is a distributed service running on all constituent hosts of a MAZE, with one scheduler

master providing coordination and serialization functions. Specifically, the VPC a) accepts

the meta-scheduler’s commands to prepare and extend tasks’ program state and start tasks,
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b) helps the memory subsystem handle tasks’ memory accesses, c) facilitates the execution

of instructions such as spawn (see Table 4.1), d) sends scheduling-related requests to the

meta-scheduler, and e) provides I/O services. As these functions are tightly correlated with

other subsystems of MAZE, we introduce pertinent details of the VPC design along with the

treatise of the other system components in Section 4.2 and Section 4.3. Suffice it at present

to know that one VPC contains at most one task at a specific time, and it becomes available

for accommodating another task after the current incumbent task exits.

Programming in i0 We use one example to illustrate how to write a simple program on a

MAZE using i0. Details of the i0 architecture will be introduced in Section 4.2.

The following i0 code performs a sum operation of two 64-bit integers by a sum task

task. The starting address of the memory range storing the two integers is in 0x300001000,

and 0x300001008 contains the address where the results should be stored. The text after

“;” in a line is a comment, and the task’s name is in italic.

1 sum task:

2 add (0x300001000):ue, 8(0x300001000), (0x300001008)

3 ; :ue indicates 64-b data

4 conv $1:ue, 8(0x300001008):ue ; set exit code

5 exit:c ; exit and commit

The code above adds two 64-bit integers with all operands stored in memory. Figure 4.2

shows the execution of the sum operation. Suppose the memory location 0x300001000 and

0x300001008 store values 0x800000000 and 0x900000000, respectively. The add instruc-

tion at line 2 obtains the operands at 0x800000000 and 0x800000008, computes the sum,

and stores the sum in 0x900000000. The conv instruction at line 4 sets the exit code for the

task at address 8(0x300001008) (0x900000008 after dereferencing). Finally, the exit:c

instruction at line 5 makes the task exit and commit its changes to the memory. After being

committed, the changes become visible to other tasks.
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Figure 4.2: Execution of an add instruction

Table 4.1: i0 instructions
Instr. Operands Effect

conv D1,M1 Convert D1 to M1

add D1,D2,M1 Add D1 and D2; store the result in M1

sub D1,D2,M1 Subtract D2 from D1; store the result in M1

mul D1,D2,M1 Multiply D1 and D2; store the result in M1

div D1,D2,M1 Divide D1 by D2; store the result in M1

and D1,D2,M1 Store the bitwise AND of D1 and D2 in M1

or D1,D2,M1 Store the bitwise OR of D1 and D2 in M1

xor D1,D2,M1 Store the bitwise exclusive OR of D1 and D2 in M1

shift D1, I1,M1 Store the result of shifting D1 by I1 bits in M1

b D1,D2,M1 Compare D1 and D2; branch to M1 if a specific condition is met

brl M1,M2 Branch and link (procedure call)

spawn M1,M2,M3, M4 Create a new task

spawnx M1,M2,M3, M4, M5 Create a new task in a new space (discussed in Chapter 5)

exit Exit and commit or abort

nop No operation

int I Soft interrupt

Mn specifies an operand in memory; In specifies an immediate operand; Dn specifies an
operand in memory or an immediate operand.
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The example illustrates several important design choices of i0. First, it uses memory

addressing, not combined register-memory addressing, for all operands. With an emphasis

on instruction orthogonality, i0 allows an instruction to freely choose memory addressing

modes to reference the operands. Second, i0 provides a low-level abstraction which is close

to hardware and the semantics of most of the instructions are common in other widely used

ISAs. With this design, i0 retains traditional ISAs’ advantages, such as generality and effi-

ciency, and it is easy to map i0 to hardware or another common ISA at low cost. Finally, the

commit operation, which makes a task’s changes to the memory visible to other tasks, occurs

at the end of a task’s execution. This arrangement enforces a clearly defined task lifecycle

and its semantics concerning the program state of the MAZE.

4.2 i0

We design i0 as a new ISA targeting a large-scale virtual machine running on a plurality of

networked hosts and build the MAZE above this architectural abstraction. We first introduce

the design of i0’s instructions in this section, and then present i0’s parallelization mechanism

in Section 4.3. We will discuss the memory model in Section 5.2.

Given the system goals of the MAZE design, the goals of the i0 design are as follows.

• i0 should support a memory model and parallelization mechanism scalable to a large

number of hosts.

• i0 programs should efficiently execute on common computing hardware used in dat-

acenters, which are usually made of commodity components. Certain hardware may

provide native support to i0 in the future, although we emulate i0 instructions on the

x86-64 architecture in our current implementation.

• i0 instructions should be able to express general application logic efficiently.

• i0 should be a simple instruction set with a small number of instructions so that it is

easy to implement and port.

34



Figure 4.3: Mapping of the RAMRs to physical registers in x86-64

• i0 should be Turing-complete.

In summary, i0 should be scalable, efficient, general, simple, and Turing-complete. To

ensure programmability, simplicity and efficiency, i0, as shown in Table 4.1, includes a se-

lected group of frequently used instructions. In addition, the spawn and exit instructions

facilitate construction of concurrent programs with many execution flows. The Turing com-

pleteness can be proved by using i0 to emulate a Turing-complete subleq machine [70].

An i0 instruction may use options to indicate specific operation semantics, such as the op-

tion :c in the sum task example in Section 4.1, and the operands can reference immediate

values or memory contents using direct, indirect or displacement addressing modes. Al-

though not explicitly providing registers, the unified operand representation permits register-

based optimization because the memory model allows some memory ranges in DR (Direct-

addressing Region, discussed in Section 5.2), which can only be referenced with direct ad-

dressing, to be affiliated with registers. We name these ranges Register-Affiliated Memory

Ranges or RAMR for short.

Figure 4.3 shows the RAMR to physical register mapping in our implementation on x86-

64. i0 currently supports 8 registers named RAMR 0 to 7. The programmers or compilers
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Figure 4.4: State transition of the task and depending task

can use these RAMRs to store most frequently accessed data in the program to improve the

performance. In our evaluation discussed in Chapter 6, we show that using RAMRs can

speed up the loop microbenchmark by more than 5 times.

At first glance the RAMR design seems to make i0 less portable. However, the programs

using RAMRs need not to be changed for MAZEs on different platforms. On a platform that

has fewer physical registers in the processors than the RAMRs, the RAMRs simply revert to

direct-addressed memory ranges. Hence, a MAZE can speed up the programs with physical

registers as much as possible while ensuring the portability and correctness.

4.3 Parallelization and scheduling

We design MAZE’s parallelization mechanism so that it is easier to develop not only “embar-

rassingly parallel” programs, but also more sophisticated applications, and the programs can

efficiently execute in a datacenter environment. The goal is to provide a scalable, concurrent

and easy-to-program task execution mechanism with automatic dependence resolution. To

achieve the goal, we design a many-task parallelization mechanism for large-scale parallel

computation, a scheduler to manage the tasks, and depending tasks to express and resolve

task dependences.
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4.3.1 Task

Tasks are the abstraction of the program flows in a MAZE. A task is created by its parent

task and terminates after it exits or aborts. Figure 4.4 summarizes the state transitions in a

task’s life cycle. The parent task creates a new task by executing the spawn instruction. A

“created” task moves to the “schedulable” state after the parent task exits and commits suc-

cessfully. The task moves to the “running” state after being scheduled and to the “finished”

state after it exits or aborts. The “depending” state applies only to a class of special tasks

called “depending tasks” which are introduced in Section 4.3.4.

Each task uses a range of memory as its stack range (stack for short), changes to which

are discarded after the task exits, and multiple ranges of memory as its heap ranges. Because

tasks are started by the scheduler, the scheduler needs to know certain control information

about the task, such as the location of code and the task’s stack and heap ranges. MAZE uses

a Task Control Block (TCB) to store such control information. Figure 4.5 shows the content

of a task’s TCB as well as the task’s initial stack. The TCB contains the stack base address sb

and stack size ss. fi specifies the address of the first instruction from which the task starts to

execute. The heap ranges and heap range count fields stores the locations and the number

of the heap ranges, respectively. The MDS ranges and MDS range count fields are used

by the depending task mechanism discussed later.

Every task resides in one VPC. Providing system functions related to the management

and operations of tasks, the VPC reduces the overhead of dispatching and starting a task.

VPCs interact with other parts of the MAZE system, and hide the complexity of the system

so that the tasks can focus on expressing the application logic on the abstraction provided by

i0. Because VPCs are reused, a large portion of the task startup overhead, such as loading

modules and setting up memory mapping, is incurred only once in the lifetime of a MAZE.

To start a task, the VPC only needs to notify the memory subsystem to set up the task’s

snapshot, and the supporting mechanisms, such as the network connections, can be reused.

Hence, VPCs make it efficient to start tasks in a MAZE. Chapter 6 quantitatively studies the

overhead of creating and starting tasks.
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Figure 4.5: Task i’s initial stack and TCB

4.3.2 Scheduling

In a complex program, myriads of tasks may be created dynamically and exit the system after

completing their computation. VPCs, on the other hand, represent a semi-persistent facility

to support tasks’ execution. Hence, there can be more tasks than VPCs in a MAZE, and

the scheduler assigns tasks to VPCs, as well as manages and coordinates the tasks through-

out their life cycles. Specifically, the scheduler is responsible for deciding when tasks should

start execution, assigning tasks to VPCs, preparing tasks’ memory snapshots, handling tasks’

requests to create new tasks and managing the tasks that the MAZE does not have resources

(VPCs) to execute currently. As the child tasks created by a parent task are not schedula-

ble until the parent task exits and commits successfully, the scheduler also maintains the

“premature” tasks (the tasks in the “created” state) in the MAZE. In addition, the scheduler

implements the MAZE’s depending task mechanism (to be discussed in Section 4.3.4).

The scheduler of MAZE is a distributed service consisting of two parts: the scheduler

master (the master) and the scheduler agent (the agent). There is a single master in a MAZE,

and there are many agents residing in VPCs. The master and the agents communicate with
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each other through the datacenter network. The master makes high-level scheduling deci-

sions, such as dispatching tasks for execution and assigning them to VPCs, and commands

the agents to handle the remaining task management work, such as preparing and updating

tasks’ snapshots. In the other direction, an VPC can send scheduling-related requests to its

associated agent and the agent may ask the master for coordination if it is needed.

The scheduler dispatches multiple tasks from its pool of schedulable tasks according

to the scheduling policy, which takes locality along with other factors into consideration,

to an VPC when it is free (no task is running in it), creating a memory snapshot for the

task and notifying the VPC to execute the task. A task may create as many child tasks as

the entire MAZE (or datacenter) can handle. When a task requests to create new tasks, the

scheduler constructs TCBs for the child tasks, and extends the parent task’s memory snapshot

so that the parent can construct and access the child tasks’ stacks. After the parent exits and

commits successfully, the scheduler adds the child tasks to the task pool and marks them as

schedulable.

Although there is only one scheduler master in a MAZE, it has not been found that the

single master constrains the MAZE’s scalability. As aforementioned, the master is only

responsible for high-level decisions and occasional coordination and arbitration, and is, con-

sequently, very lightweight. Most of the work is handled in parallel by the scheduler agents

in the VPCs. Hence, the scheduler does not constitute a bottleneck in the MAZE in practice.

Several large-scale systems, such as MapReduce [42], GFS [51], and Dryad [59], follow a

similar single-master design pattern.

Together with the design of the scheduler, the design of other components of MAZE op-

timize the workflow to ensure scalability. The snapshot-based memory model of i0 enables

massive task-level parallelism by invoking scheduling and coordination only when a task

starts and commits. The ISA-level lightweight task creation through the spawn instruction

enables programs to create tasks at low cost. The two-version design makes the metadata

management fast and efficient so that the memory subsystem can scale to handle many snap-

shots. These designs ensure that MAZE scales well as the processor count and the data size
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increase. In Chapter 6, we examine MAZE’s scalability.

4.3.3 Many-task parallel execution

The MAZE should be able to accommodate a large number of tasks and execute them in

parallel to exploit the aggregate computing capacity of many physical hosts. This requires

that the parallelization mechanism of MAZE provide scalable, concurrent and efficient task

execution and a flexible programming model to support many-task creation and execution.

To support many-task parallel execution on the ISA level, the task creation and dispatch-

ing mechanism must be highly efficient. We design an instruction-level task creation mech-

anism. To create a new task and prepare it for execution, the program only needs to specify

the fi and the heap ranges for the new task, issue a “spawn” instruction, and instantiate the

stack.

We use an example to show how a task creates a new task and how the MAZE handles

the task creation. When a task, Ti, creates a new task, Tj , Ti executes the instruction “spawn”

with addresses of Tj’s stack range, heap ranges and fi, as operands. V PC(Ti), the VPC in

which Ti runs, sends Tj’s control information specified by these operands to the scheduler.

As Ti may write the input data into Tj’s stack and a memory range can be used by Ti only

after V PC(Ti) has the range’s snapshot, the scheduler creates a snapshot of Tj’s stack and

merges the snapshot into Ti’s current one. After the memory range for Tj’s stack is ready, Ti

writes the initial application data into Tj’s stack. The scheduler constructs and records Tj’s

TCB along with the TCBs of the other tasks created by Ti.

When Ti exits and commits, the scheduler starts the newly created tasks by Ti, including

Tj , according to the recorded TCBs. Using Tj as an example, the task start-up procedure is

as follows.

1. The scheduler chooses V PC(Tj) for Tj .

2. The scheduler creates snapshot A of Tj’s stack range and heap ranges according to

TCBj .
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3. The scheduler sends A and TCBj to V PC(Tj) and commands V PC(Tj) to start Tj .

4. V PC(Tj) sets Tj’s local context according to TCBj .

5. V PC(Tj) starts to execute Tj from fi.

4.3.4 Task dependency

Task dependency control is a key issue in concurrent program execution. Related to this, syn-

chronization is often used to ensure the correct order of the operations, avoid race conditions,

and, with execution order constrained, guarantee that the concurrent execution does not vi-

olate dependence relations. The existing approaches have their limitations and constraints:

the synchronization mechanisms are not natural or efficient to represent dependence [35, 87];

MapReduce employs a restricted programming model and makes it difficult to express so-

phisticated application logic [47, 80, 89]; DAG-based frameworks, such as Dryad [59], incur

non-trivial burden in programming, and automatic DAG generation has only been imple-

mented for certain high-level languages [92].

As an important goal in the MAZE design, the i0 architecture should provide a task de-

pendency representation and resolution mechanism with which task-level dependence can

be naturally expressed, concurrent tasks can proceed without using synchronization mecha-

nisms such as locks [29], and sophisticated computation logic can be processed effectively

with dynamically scheduled parallelism. Departing from existing solutions, we design a

depending task mechanism in the i0 architecture to provide a flexible way of declaring de-

pendence and enable the construction of sophisticated application logic.

A depending task type, or depending task, is a task template that depends on other tasks.

Depending task types are not actual tasks to be scheduled for execution. Instead, a depending

task type will be activated and instantiated to one or many tasks, called depending task

instances, with the same stack and heap ranges and fi as specified in the depending task

type’s TCB, and the depending task instances are tasks that will be scheduled to VPCs for

execution. The type and instance model can efficiently support the common situations in
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large-scale data processing programs where the same tasks are created and executed multiple

times upon data changes.

A depending task type W is not activated until other tasks change specific memory ranges

that are “depended” by W . We call these ranges W ’s “memory dependence sets” (MDS).

The MDS is specified by the parent task using an operand of the spawn instruction, and we

use the MDS range count field in the TCB (refer to Figure 4.5), which stores the number of

ranges in the MDS (0 for a regular task), to distinguish a depending task from a regular task.

The depending task-specific data structures impose almost no space overhead for regular

tasks as the MDS ranges list, which stores the memory dependence sets, is variable-size.

Suppose a task, R, has created a depending task type W . When R exits and commits,

W is enabled by the scheduler (transition to the “depending” state in Figure 4.4) and stays

in the depending task type pool. When some other tasks or depending tasks write W ’s

memory dependence sets and commit the changes to the global memory space, the memory

subsystem notifies the scheduler, and the scheduler creates a depending task instance W ∗

and moves W ∗ to the task pool, making it schedulable. At the same time, W is still at the

“depending” state and new commits to its memory dependence sets will also activate W

and new depending task instances from W will be instantiated. A depending task instance

can delete the corresponding depending task type by specifying the :cd or :ad option of

the exit instruction when it commits or aborts its changes. The depending task instance can

also choose to only commit or abort its changes by specifying the :c or :a option and leave

the depending task type in the “depending” state to create more instances. This way, many

instances can be created efficiently in the system without invoking many spawn instructions

and it is ensured that after each commit to the MDS ranges of a depending task type, at least

one depending task instance is created. Hence, no changes are missed by the depending task

type before a depending task instance of it deletes the type.

With the depending task mechanism, the programs can naturally express and focus on

the true dependence among tasks and data. Therefore, programmers can easily construct

programs for not only embarrassingly parallel but also complex, iterative, or even interac-
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tive computation. The MAZE system automatically resolves the dependence and efficiently

executes the program with parallelization.

4.4 I/O, signals and system services

For simplicity and flexibility, i0 adopts the memory mapped I/O for MAZE to operate on I/O

channels by accessing memory ranges in DR.

For example, we map the 1-byte memory range at 0x100000200 to the standard input

(STDIN) and the range at 0x100000208 to the standard output (STDOUT). The task can

input from STDIN by reading the address 0x100000200 and output to STDOUT by writing

to the address 0x100000208. The MAZE translates the memory accesses to these addresses

to requests to the VPC for I/O operations. For example, one task can read one byte from

STDIN and write the value to STDOUT by the following instructions.

conv 0x100000200:sb, 0x300001000:sb # read one byte from STDIN

conv 0x300001000:sb, 0x100000208:sb # write the byte to STDOUT

This design does not require additional instructions—all i0’s memory access instructions

can also be used for I/O. We can use this mechanism to support many kinds and a large

number of I/O channels which may be distributed in many VPCs.

In a MAZE, many system events may occur. We design a signal mechanism to enable

tasks to catch the information of events of interest in the system. Signals are notifications

of these events. The signal mechanism is built on the depending task mechanism and the

system services (to be discussed below). The signals are represented as changes to specific

memory ranges, and tasks (depending tasks) can “depend” on these memory ranges to get

notified.

To support system functions, such as the I/O and signal mechanisms, several distributed

system services cooperate with the scheduler and VPCs in MAZE. For example, the I/O

services on VPCs manage I/O channels, and the “system state” service broadcasts “system
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idle” signals. On top of the compact and efficient core parts of the MAZE as described, it is

easy to implement various system services to provide a rich set of functions.

4.5 Programming on MAZE

Being Turing-complete, i0 instructions are capable of expressing any computational logic.

They can also emulate the semantics of instructions in other ISAs. Additionally, we design i0

as an extensible instruction set so that more instructions can be added to i0 if it is sufficiently

beneficial to do so. More importantly, the parallelization and dependency control mecha-

nisms along with the snapshot-based memory model provide a convenient and efficient way

to design concurrent programs in the “lock-free” style [56].

We use an example to show how to naturally express task dependence and avoid race

conditions using depending tasks. In Section 6.2, we show how to design and implement

an improved MapReduce framework, vMR, on Layer Zero. Using the spawn instruction, we

can easily create 2 sum task tasks introduced in Section 4.1 to calculate sums in parallel. In

this example, we design a new task to add the 2 sums together. The new task, implemented

as a depending task shown in the following code, “depends” on the output of the 2 sum task

tasks.

1 sum depending task:

2 ;read the heap addresses of the depended tasks and

3 ; the address to store the result from the stack, and stores

4 ; them in 0x300001000, 0x300001008, and 0x300001010 (omitted)

5 ;check whether the depended data are ready

6 b:e $0:ue, 8(0x300001000), keep_depending

7 b:e $0:ue, 8(0x300001008), keep_depending

8 ;sum the two integers as the sum task

9 add (0x300001000):ue, (0x300001008), (0x300001010)

10 conv $1:ue, 8(0x300001010):ue ; exit code
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11 exit:cd ; commit and delete itself

12 keep_depending:

13 exit:a ; abort

The sum depending task is activated and a depending task instance is created when

either of the sum task s commits and can check their exit codes to determine whether both

operands for the sum operation are ready. This mechanism can scale to handle the paradigm

that one depending task depends on one, several or many tasks by depending on an array

of memory ranges updated by the depended tasks and checking the data in these memory

ranges. The array of depended memory ranges are specified as an operand to the spawn

instruction for creating the depending task. The depending task keeps “depending on” the

data by the depending task type it depends on if either of the two depended tasks has not

exited and committed. Only after all data are ready, one sum depending task instance

executes exit:cd to commit its changes, exit and delete the depending task type. As shown

in this example, programmers only need to create the depending tasks, and the dependences

are automatically resolved by the scheduler and depending task related mechanisms in the

MAZE.

Although we show the examples in i0 in this section, compilers can certainly be involved

in the programming in the Layer Zero environment and transform programs written in high-

level languages into i0 code. With a sufficiently sophisticated compiler, it is also possible

to port traditional software to Layer Zero by recompiling them. We have designed and

implemented the c0 programming language [4], the cc0 compiler [6] and the libi0 library [13]

to program on MAZE. Providing richer support for programming on MAZE is one piece of

our future work.

Although one program instantiated as many tasks runs in a MAZE at a specific time,

many MAZEs can run concurrently in one cluster by isolating the computing resources to

RCs. In the CCMR research testbed (introduced in Chapter 6), we set up multiple MAZEs

on the same cluster and many users can develop and run their programs in a time-sharing

manner.
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4.6 Discussion

Cloud computing is an emerging and important computing paradigm backed by datacen-

ters. However, developing applications running in datacenters is challenging. We design

MAZE—a big virtual machine that is general, efficient, scalable, portable and easy-to-

program—as an approach to developing a next-generation computing technology for cloud

computing. Giving programmers an illusion of a “big machine”, we design the i0 as the

programming interface and abstraction of MAZE.

In addition to the programming interface, the underlining data substrate also plays an

important role for large-scale data processing. In next chapter, we will discuss VOLUME,

the solid data substrate for large-scale data processing on MAZE.
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CHAPTER 5

IMPROVED DATA SUBSTRATE FOR

LARGE-SCALE DATA PROCESSING

Chapter 4 presents the design of i0 and MAZE for in-memory computation. In this chapter,

we will discuss the design of VOLUME, a distributed transactional virtual memory system

with persistency support, as the substrate of data handling for programs on MAZE.

VOLUME provides a unified memory space, and virtualizes distributed physical memory

and disks from compute nodes connected through the network. In addition to the physical

memory on the local node, the data in VOLUME may reside in the local disks, remote

physical memory or remote disks. The data distribution and communication are transparent

to programs running in VOLUME. The data access is as fast as using physical memory when

the data is on local physical memory. The data size can scale to the combined capacity of all

memory and disks in the system, and VOLUME automatically optimizes the system latency

by storing and servicing data from memory as much as possible.

We highlight the challenges and outline our approaches as follows.

• VOLUME aims to provide a large uniform memory space in which each VPC or node

can address any subset of the memory space. The data that a single node accesses may

well exceed the size of its physical memory and local hard drives combined together,

and, consequently, data may reside in local physical memory, local hard drives, remote

physical memory or remote hard drives. VOLUME must transparently fetch data from

and swap them to appropriate locations. This is one of the reasons why a simple design

that “expands” the memory on individual nodes with large swap areas cannot work for

our purpose. VOLUME must hide the location details without introducing excessive

overhead, and maintain a uniform global address space with consistent semantics on a

distributed system with commodity hardware.
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• VOLUME should provide a mechanism for application programs to store data persis-

tently and read data from I/O devices. We introduce persistent memory in the system,

and VOLUME automatically writes data to hard drives in a way that allows other tasks

or programs to retrieve the data at a later time.

• We design VOLUME to provide a transactional behavior and ensure the writes of

multiple data by a task are atomic. Our implementation of vMR leverages the atomic

guarantee to ensure its correctness.

In VOLUME, tasks of a program share the same memory space, access their data struc-

tures during the execution and make the data persistent if it is needed with normal memory

operations, following a snapshot-based transactional semantics.

5.1 System overview

Figure 5.1 shows the architecture of VOLUME which runs on top of one, multiple or many

physical hosts. We abstract groups of memory and disk resources to be virtual memory

containers (VMC). The system has many VPCs and VMCs. A VMC manages the physical

memory and disks in it and provides the virtual memory resource. All the VMCs together

form the unified memory system. VMCs handle the resource requests from the upper layer,

and swap data among the physical memory, disks, and remote VMCs through the network.

To assist a task’s accesses to the memory space, the VMC for the VPC/task makes use of

the virtual memory hardware of the host to capture the page fault when the task accesses a

memory location on a page that is not used before.

VOLUME is the memory subsystems of the MAZE. As discussed in Chapter 4, the

MAZE manages hundreds of hosts in datacenters to form a big virtual machine and provides

a meta-scheduler that schedules tasks to the compute nodes in the system and dispatches

tasks to VPCs for execution.
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Figure 5.1: VOLUME architecture

5.2 Unified memory space

VOLUME’s memory space should provide the memory capacity of exabytes to support

large-scale programs in datacenters. However, implementations of commonly used 64-bit

CPUs in datacenters only support limited memory capacity of up to hundreds of terabytes.

In the near future, the situation is not likely to change significantly. To support processing

of large datasets, we should extended the capacity of the memory space on top of the com-

modity CPUs. On the other hand, as VOLUME abstracts the computing resources at a low

level that is close to the hardware and emphasizes efficiency, the system should introduce

little overhead. Hence, we design the multi-space memory organization and mechanism in

VOLUME. A space is like a segment with a space selector. Inside each space, tasks access

memory ranges by the offsets. The memory layout is shown in Figure 5.2.

In the memory space, each task runs within one space and references memory ranges by

the offsets in the space, and space-related work, such as mapping an offset to the full memory

address, is needed only when a task starts/exits or a page fault is handled. The space size

is configured to be within the underling CPUs’ capacity so that the memory accesses in
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Figure 5.2: Organization of the memory space
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VOLUME can be directly mapped to memory accesses on the physical CPUs.

On the other hand, tasks which run in different spaces need to share data across the

spaces. For example, a task T1 in one space that creates a child task T2 to run in another

space by the spawnx i0 instruction may need to construct T2’s stack in the other space. To

support data sharing among spaces, we design the aliased memory region (AMR) which

consists of ranges (aliased ranges) with the same offset and length from all spaces as shown

in Figure 5.2. Changes committed to one aliased range are also “committed” to all other

aliased ranges. The design enables the efficient implementation that actually only maintain

the content of one aliased range for the AMR. In the above example, T1 can allocate T2’s

stack in the AMR inside T1’s space and construct it, and T2 can access its stack in the AMR

inside T2’s space.

To facilitate different usage of the memory ranges by programs, each space is divided

into two regions–the private region (PR) and the shared region (SR). The starting address of

the SR is the region boundary (RB) which is just after the address of PR’s last byte. Inside

PR, there is a special region, direct-addressing region (DR), in which memory ranges can

only be referenced in the direct addressing mode. The DR allows the program to access

system resources, such as RAMR and I/O channels (discussed in Section 4.4), with the

unified operand representation using memory addressing.

A write in an individual task’s PR does not affect the content stored at the same address

in other tasks’ PRs. In contrast, the SR is shared among all the tasks in the sense that a value

written by one task can be visible to another task in the same MAZE, with VOLUME’s

memory consistency model controlling when values become visible. A task can use the PR

to store temporary or buffered data because of its very small overhead, and use the SR to

store the main application data which may be shared among tasks.
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5.3 Snapshotted memory space

As many tasks of a program access the same unified memory space of VOLUME concur-

rently, it is challenging to efficiently control and support the concurrent accesses. The consis-

tency model of a shared memory system specifies how the system appears to programmers,

placing restrictions on the values that can be returned by a read, and is critical for the sys-

tem’s performance [22].

5.3.1 Snapshot-based consistency

VOLUME provides the atomicity and snapshot semantics to programs and implements the

consistency model that ensures the same properties as standard snapshot isolation [28] adopted

by many relational databases. Each task has its own page table and can use a specific list of

pages grouped to be a snapshot which is a set of memory ranges instantiated with the memory

state at a particular point of time. In the snapshot-based memory consistency model, every

task sees a consistent view of the memory space, called snapshotted view of space (SVS),

of a specific instantiation time as shown in Figure 5.2, and the system imposes a sequential

ordering of tasks’ commits. Each task’s updates to the virtual memory during its execution

only affect its own snapshot. A task can only commit its changes in its snapshot to the global

memory space when it exits. Hence, tasks are isolated and each has a SVS. After a task

exits and commits successfully, its changes are visible to other tasks whose snapshots are

created after the commit. If a task’s commit has any write-write conflict with other tasks’,

the commit fails and the task is aborted. Major parts of workloads in datacenters, such as

MapReduce jobs, usually can be organized to tasks that have no write-write conflicts and the

rate of unsuccessful commits is low.

VOLUME’s snapshot-based consistency model relaxes the read/write order on different

snapshots. After a snapshot is created for a task, later updates to the associated memory

ranges by other tasks do not affect the state of the snapshot. Hence, when reading data from

an address in a snapshot, a task always receives the value the task itself has written most
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recently or the value stored at the address at the time the snapshot is created. VOLUME

permits concurrent accesses optimistically, and detects write conflicts automatically. With

this consistency model, it is possible to implement atomic writes of a group of data, which

are commonly used in transactional processing and other reliable systems requiring ACID

properties. This model indeed introduces slight constraints on the organization of programs:

only one of many tasks that concurrently write to the same location can commit successfully

and the other tasks need to give up or retry. However, it assures programs written this way

are much easier to understand and reason about their correctness, as well as improves the

system’s scalability.

As discussed in Section 5.1, the VMC captures the page fault when the task accesses

a memory location on a page that is not used before, similar to demand paging. Different

from demand paging and traditional distributed shared memory, VOLUME designs place-

ment and eviction mechanisms for both local and remote memory and both local and remote

disks. When handling a page fault, the VMC searches this page in the task’s page table

which is prepared before the task’s execution according to its snapshot and stores the loca-

tion information of the pages. A task that accesses pages out of its snapshot is aborted. If the

page is in the page table, the VMC for this task sets up the page, retrieves the content of the

page locally or from a remote VMC, and updates the page table entries. Multiple tasks that

use the same memory pages can have multiple copies of the pages and access these pages

concurrently.

The page table for a task is organized as a list of page metadata arrays for the list of

memory ranges in the task’s snapshot. Hence, to locate a page’s metadata in the page table,

the VMC takes O(logM) time where M is the number of memory ranges. The number

of memory ranges is usually much smaller compared to the number of pages in a task’s

snapshot. Hence, page metadata locating operations take approximately O(1) time and the

metadata management cost is tiny as compared to fetching pages through the network. The

VMC may prefetch up to a limited number of pages when it fetches pages from a remote

VMC to avoid page faults for later page accesses. In addition, the scheduler schedules tasks

to VMCs considering the locality information so that fewer pages are fetched through the
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network. Hence, the number of pages fetched through the network is at most O(P ) for a task

that accesses P pages.

5.3.2 Managing snapshot metadata

The consistency model of VOLUME provides programs a clearly-defined memory semantics

and enables scalable parallel processing. However, it is challenging to efficiently manage a

large number of snapshots in the memory space. The snapshot’s semantics, which ensures

that any later changes of the memory content should not affect the existing snapshots, re-

quires that the VOLUME maintain more than one version of the memory content. To effi-

ciently support the snapshot management, the VOLUME organizes the SR as a sequence of

fixed-size pages and each page has two versions—a current version and a non-current ver-

sion. The current version is the latest committed version, and a snapshot consists of a number

of pages of their current versions at the time the snapshot is created. The non-current ver-

sion of a page is not included in newly created snapshots. A page’s previous version before

the current one, which may be still used by some tasks, can be tracked with the non-current

version.

With the two-version design, VOLUME only needs to maintain a small amount of meta-

data for the pages, and can efficiently handle a large number of snapshots. Meanwhile, the

current and non-current version design is friendly to the read-only sharing of data—many

tasks can read shared data with snapshot isolation and complete their execution given they

write to disjoint locations. The two-version design indeed implies a slight limitation that

some tasks may need to wait for available page versions. Typically, there are many tasks

schedulable in a MAZE and the waits usually occur to a small fraction of them. Hence, the

limitation does not lead to noticeable performance penalty in practice. On the other hand,

this design enables the system to scale, efficiently managing many concurrent snapshots.

To assist the tasks in using the shared and snapshotted SR in the unified memory space,

components of the MAZE cooperate to manage the snapshots and facilitate the memory ac-

cesses. The scheduler manages the tasks and coordinates tasks to execute on VPCs taking
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locality into consideration. For managing the tasks’ snapshots and the memory space, VOL-

UME has a home service to coordinate the snapshots. The home service is a centralized

service which maintains the metadata of the memory pages in the whole memory space for

creating snapshots and guarantees the atomicity of commit operations, acting like the direc-

tory controller for directory-based distributed shared memory systems [49, 73]. Different

from these systems, the home service of VOLUME manages only 2 versions of the metadata

for each page, and snapshot creating and committing only happen when the meta-scheduler

creates, starts and terminates tasks. The home service serializes the committing of the mem-

ory ranges only when tasks exit.

5.4 Persistency

Data-intensive computation inevitably requires a way to make the data persistent. Programs

need a mechanism to make some of its data persistent for storing results which may be used

by other programs at a later time. Files are the common form of persistent data stored on

disks. However, the programmers need first convert the in-memory data structures to a for-

mat suitable for a file and copy them from the memory to file systems. The data preparation,

system calls and I/O lead to extra performance overhead in both the programs generating the

persistent data and the ones using them.

To provide programmers a flexible and efficient interface to store persistent data, we

design the persistent memory mechanism in VOLUME. The persistent memory is a memory

region in SR which programs can access through regular memory operations as shown in

Figure 5.2. In this way, the distinction between in-memory and persistent data structures is

eliminated, and the same set of operations can be applied to both kinds of data.

To make the state changes of the persistent memory easy to reason about by program-

mers, the memory ranges that a task accesses in the persistent memory are also in its snap-

shot. After the task commits successfully, the changes to the persistent memory by a task

in its snapshot are guaranteed to be persistent on disks. Another task can access and update

data in the persistent memory deterministically at a later time.
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As the disks are unified in the memory space with the physical memory, we should design

the mechanism that can efficiently service tasks’ memory accesses in the persistent memory

with data on local or remote disks. For efficiently locating the data on disks, VOLUME

maintains a one-to-one mapping of pages in the memory space to blocks (pages) on disks

and the page fault handling mechanism for non-persistent memory ranges can be reused.

When a task reads a memory range in the persistent memory for the first time, a page fault is

triggered and captured by the VMC. Different from handling page faults for non-persistent

memory pages, the VMC sets up the page and retrieves the content from local or remote

disks. After being committed successfully, the memory pages in a task’s snapshot are stored

in the corresponding disk blocks.

5.5 Atomic commits

One possible way to implement atomic commits is to let the home service decide whether a

commit succeeds or aborts without requiring a distributed atomic commit protocol [52, 85].

The VMC for handling the commit first stores copies of the changed pages locally, and then

the home checks whether the commit can be applied and changes the metadata if the commit

passes the check.

However, as VOLUME unifies the physical memory and disks, there are challenges for

supporting atomic commit efficiently. To handle possible faults of the home, the changes

to the persistent memory’s metadata should be made persistent atomically if the commit

succeeds. Additionally, VOLUME requires saving the changes in the persistent memory to

disks which takes more time than storing the data in physical memory. If a commit is aborted

by the home, simply saving the changes to disks in the persistent memory before committing

is wasted and should be avoided.

Hence, we design the commit protocol of VOLUME, as shown in Figure 5.3, that detects

and aborts commits that conflict with others early and enables the recovery of the metadata

of persistent memory if the home service crashes or restarts by storing changes to the persis-

tent memory’s metadata to a write-ahead log. Specifically, the protocol for a task’s commit
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Figure 5.3: VOLUME commit protocol (two commits proceed concurrently)

consists of the following steps.

1. The VMC prepares the commit by collecting the metadata of updated pages by the

task in its snapshot, and queries the home whether the commit can proceed.

2. The home decides whether the commit should be aborted by checking the in-memory

metadata and returns the result to the VMC. This can abort the commits that have

conflicts with other commits early and avoid useless I/O to disks (early abort).

3. If the commit is aborted by the home, the VMC discards the changes. Otherwise, the

VMC saves changed pages in the persistent memory to disks, stores copies of changed

pages in another memory area, and submits a commit request to the home.

4. The home checks the commit request with the latest metadata again. If the commit

passes the checking, the home allocates an ID for this commit, writes “start-commit

ID” and the metadata modifications for the persistent memory to the write-ahead log,

applies the modifications to the in-memory metadata and logs “complete-commit ID”

to complete the commit.
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With this protocol, the changes made by a task are committed atomically. Any commit

that fails to complete the step that the “complete-commit” log entry is written is aborted

when the home restarts. All successful commits exhibit a serial order according to the corre-

sponding “complete-commit” log entries. When a snapshot is created, it includes the pages

updated by the successful commits in the log. Since the pages are stored before the log

entries are written, the snapshot includes the latest pages committed successfully. In the

commit protocol, only a very small part of the total work for a commit is on the home. In

our current implementation, the metadata for each page consumes at most 16 bytes (8 bytes

for each version) of memory at home on average since pages of a continuous range with the

same metadata are managed together, and each page is 4096 bytes. That is, at most 0.78%

(2 ∗ 16/4096) of the total commit operations is on the home. Hence, the home can handle

many commit requests efficiently.

Using the transactional semantics of VOLUME, a program can also ensure that only one

task commits its changes successfully when multiple tasks conduct the same work, such as

the backup executions in MapReduce [42]. These tasks can share a status code s which is

the value in a memory range that indicates whether a task has completed successfully. The

task, say, Ts, which exits and commits first will commit successfully at time ts, and updates

s. The other tasks for this work are in two classes, both of which will abort:

• The task, say, T1, created its snapshot before ts. s in T1’s snapshot indicates the task is

not completed successfully yet and T1 proceeds with the computation, updates s and

tries to commit. As there is write-write conflict between Ts and T1’s commits on s, T1

aborts.

• The task, say, T2, created its snapshot after ts. s in T2’s snapshot indicates the task is

already done and T2 aborts.
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5.6 Fault tolerance

With the atomic commits, VOLUME handles faults gracefully and provides an easy-to-

reason semantics that the memory ranges in the persistent memory contain the content up-

dated by the latest successfully committed snapshots. VOLUME handles faults from the

home service or VMCs by restarting them. The home service recovers the metadata for the

persistent memory from the write-ahead log and the VMCs continue servicing the pages ac-

cording to the mapping between the pages in the persistent memory and the blocks of disks

on the hosts where the VMCs reside. This semantics makes it easy for programmers to de-

sign programs to handle the faults in the cluster and possibly recover the execution of long

jobs after faults to avoid complete re-runs—the content in the persistent memory is always

consistent and programs can store necessary state for recovery in it.

To support programs that require high availability and throughput, VOLUME provides

mechanisms that programs can use to replicate data to different VMCs. We made several

design choices to give programmers a consistent experience with the overall memory sys-

tem. First, as VOLUME unifies the physical memory and disk resources of many hosts in

a memory space, we chose to also design the replication mechanism based on the mem-

ory abstraction. Second, the VOLUME ensures the snapshot-based consistency for the data

replication. This provides programmers the same easy to reason about semantics of changes

to data in the memory space no matter whether the changes are replicated or not. Third, the

programs make the choice of which data to replicate and how many replicas as long as the

memory system can support, while the memory system ensures the data are replicated across

VMCs.

With respect to the basic choices, we design the replication mechanism that is flexible and

simple to use. The overall persistent memory is partitioned to multiple replication regions

which are memory ranges of the same size. How the space is partitioned is part of the system

configuration. According to the configuration, the programs can include memory ranges

from multiple replication regions in its snapshot and write the data that need to be replicated

in ranges in a chosen number of replication regions. The VOLUME stores the changed pages
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in different replication regions on different VMCs according to the system configuration

rules during the commit process. With this mechanism, the program can choose the data

to replicate and the number of replicas by common memory operations. As changes to all

replicas are within a single snapshot, the consistency model is the same with or without data

replication.

5.7 Locality and scheduling

To better control the scheduling of tasks and improve the locality, we implement and add

two scheduling algorithms—the deterministic scheduling and the best-effort locality and la-

tency (BELL) scheduling algorithms—to Layer Zero’s meta-scheduler which uses a FIFO

scheduling algorithm to assign tasks in the task queue to available VPCs by default. The

deterministic scheduling algorithm assigns tasks to VPCs by hashing the IDs of tasks to

VPC IDs. With this algorithm, the scheduling for tasks to VPCs is deterministic and re-

mains the same for repeated executions of a program, which makes it easier to analyze the

behavior of the program. Besides providing repeatability, the deterministic scheduling al-

gorithm also gives programmers an instrument to influence the scheduling decisions of the

meta-scheduler. In general, it also improves the locality compared to the FIFO scheduler for

jobs that run repeatedly. The more sophisticated BELL scheduling algorithm uses the delay

scheduling techniques [93] and may skip some tasks from the front of the task queue and

assign the task that has better locality on an available VPC/VMC. The locality information

is collected from the memory range usage history of tasks according to their snapshots when

the meta-scheduler dispatches tasks to VPCs. If a task at the head of the queue has been

skipped for a certain period of time, it is dispatched to a VPC even if the locality is poor.

5.8 Programming considerations

As shown in Section 1.3, programs are organized as tasks. Each task works on its own

snapshot and commits changes atomically. Programming techniques for database systems
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or transactional memory systems can also be applied for programming on VOLUME. As

unsuccessful commits waste the execution of tasks, we design the commit mechanism to

detect problematic commits as early as possibly by the early abort mechanism as discussed

in Section 5.5. On the programmers’ side, programmers can also tune the performance of

programs following the similar rules for traditional transactional memory systems [53], such

as “large transactions are preferable” and “small transactions should be used when violations

are frequent”.

Table 5.1: Cost for accessing N pages in the memory range of M pages

Memory Pages fetched through network Size of snapshot data

access pattern Bad locality Good locality structure + metadata (bytes)

Sequential O(N) O(1) ∼ N/8 + 8 ∗N
Clustered * O(N) O(1) ∼ N/8 + 8 ∗N

Random O(N) O(N) ∼ M/8 + 8 ∗N
∗ Clustered memory access means accessing memory with temporal or spatial locality.

For common memory access patterns in big data processing programs, VOLUME can

support the memory accesses efficiently. Table 5.1 shows the cost of the memory system for

facilitating the accesses of N pages from the memory range of M pages. The number of

pages fetched through the network reflects the main cost in the memory system as we will

show in Section 6.4.1, and the size of the snapshot metadata reflects the cost of the metadata

management. As VOLUME only fetches memory pages accessed by the task, O(N) pages

are fetched even if the locality was bad. For sequential and clustered memory accesses, the

scheduler may schedule the tasks to execute on VMCs with good locality and avoid fetching

memory pages through the network. The tasks accessing memory in a range of M pages

include the M pages in the snapshots. For the sequential and clustered memory accesses, M

equals to N because the programmers can include only the accessed pages in the snapshots.

The snapshot data structure only includes the version numbers of pages and the metadata

for the accessed pages are fetched from the home on demand. Each version number is

represented by 1 bit and the metadata for each version of a page is 8 bytes. In Table 5.1, the

size of the snapshot data structure and the fetched metadata for random memory accesses is
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the largest one. However, the cost is relatively small with respect to the number of pages

accessed. For example, for facilitating a task accessing 1GB (262,144 pages) data in a 1TB

(268,435,456 pages) memory range, the snapshot data structure and metadata used are only

around 34MB.

5.9 Discussion

We construct VOLUME, a distributed virtual memory as a system-wide data substrate. VOL-

UME provides a general memory-based abstraction with transactional semantics, takes ad-

vantage of DRAM in the system to accelerate computation, and, transparent to programmers,

scales the system to handle large datasets by swapping data to disks and remote servers for

general-purpose computation in datacenters.

Together with the i0 and other MAZE subsystems, VOLUME provides a solid substrate

for general, scalable and efficient large-scale data processing. Above the distributed virtual

memory, it is easy to construct systems, implement programs or improve the performance

of traditional systems such as MapReduce. In Chapter 6, we show how to construct the

enhanced MapReduce system, vMR, on VOLUME, and the evaluation shows that VOLUME

enables vMR to efficiently handle data.
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CHAPTER 6

LAYER ZERO IMPLEMENTATION AND

EVALUATION

We have implemented and tested i0, MAZE and VOLUME on several platforms. Our evalu-

ation shows that MAZE has excellent performance and scalability and is faster than Hadoop,

X10 and Spark.

6.1 Implementation

We implemented i0, VOLUME and other MAZE components on x86-64 hardware. The

implementation of the MAZE comprises around 31,000 lines of C and assembly code. On

each host, the MAZE runs in conjunction with a local Linux OS as the base system which

manages local hardware resources including CPUs and local file systems. We emulate i0

instructions on x86-64 machines in our current implementation by using binary translation

to generate x86-64 code on the fly during the execution of a i0 program.

We have implemented and run MAZE on multiple platforms as listed below.

• The CCMR research testbed. As shown in Figure 6.1(a), the CCMR testbed is con-

structed for cloud computing research. It is composed of 50 servers with Intel Quad-

Core Xeon processors. The servers are connected by 10Gbps and 1Gbps networks.

• The Amazon Elastic Compute Cloud (EC2). To examine MAZE’s portability and

scalability on public IaaS platforms, we conduct part of the experiments on Amazon

EC2 instances of the m1.large type in the us-east-1a zone.
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(a) CCMR (b) TH-1/GZ

Figure 6.1: The CCMR and TH-1/GZ supercomputer

• The TH-1/GZ supercomputer. To examine how MAZE performs in a high-performance

computing (HPC) environment, we conduct some experiments on the TH-1/GZ su-

percomputer (Figure 6.1(b)) which follows the same architecture of Tianhe-1A [90]

ranked currently number 5 in the TOP500 list [86].

The implementations on EC2 and TH-1/GZ also show the portability of i0 in virtualized,

heterogeneous and HPC environments. Although the platforms have quite different under-

lying hardware configurations and different Linux kernels, it proves to be straightforward to

port i0 to all platforms by adding logic to match specific kernel data structures. Application

programs run unchanged at all platforms without recompilation.

6.2 Fast MapReduce on VOLUME

VOLUME provides a flexible and efficient data substrate for the datacenter platform. To

investigate how to use distributed virtual memory to enhance existing system designs with

VOLUME, we develop vMR, which is a new MapReduce framework with enhanced perfor-

mance. Existing MapReduce programs can be easily ported to vMR. Different from earlier

MapReduce designs, the data flows among map and reduce tasks in vMR are handled by the

memory abstraction provided by VOLUME.
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The programs that run on vMR are also written in the c0 programming language. To write

a vMR program, the programmer implements the map, reduce, combine and vMR finish

functions. vMR finish is called by the vMR framework after one job finishes. Both the

combine and vMR finish are optional. To start a vMR job, a program calls the vMR run

function with the job specification. Programmers can easily design programs for iterative

computation by calling vMR run in the vMR finish function. A default partition func-

tion (hash(key) mod R as in MapReduce [42]) is integrated in vMR and programmers can

override the partition function to control the partitioning of intermediate key/value pairs.

vMR handles a job with a set of map tasks and reduce tasks as shown in Figure 6.2,

following the MapReduce model. Each task in vMR has a status code which is a value

in a memory range that indicates whether a task is completed successfully. To start a job,

vMR splits the input data and creates map tasks which parse key/value pairs out of the input

data, pass them to the programmer-defined map function, partition the produced intermediate

key/value pairs, group and pass them to the combine function if it is defined, and store the

intermediate data in VOLUME. After all the map tasks finish, vMR creates reduce tasks.

Each reduce task collects the intermediate key/value pairs for its partition, sorts and groups

them by the keys (shuffle), passes the keys with lists of values to the programmer-defined

reduce function, and stores the output in VOLUME. After the reduce tasks finish, vMR in-

vokes the callback function vMR finish. vMR distributes the tasks to a plurality of compute

nodes to exploit parallelism. If there are not enough VPCs for all the tasks at the same time,

the tasks will be maintained in queues and dispatched in multiple waves for execution.

6.2.1 Execution control

As there are many map and reduce tasks running in parallel, ensuring the dependence relation

among them is a critical part of MapReduce systems. To make sure that tasks execute in

a correct order, Hadoop and the implementation described by Dean et al. [42] adopt the

centralized execution control and require a master program or master node to assign tasks

to workers or slave nodes. vMR uses depending tasks mbarrier and rbarrier to check
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Figure 6.2: vMR tasks and data flows

map and reduce tasks’ status codes and ensure the dependence relation. The scheduling and

coordination function in vMR are provided through the tasks and depending tasks, and the

location of data to process are efficiently and conveniently passed to the tasks as memory

addresses in VOLUME. Hence, the execution control logic in vMR is distributed and vMR

does not require a master program or master node.

6.2.2 Data flow

The execution of a parallel program in a system mainly consists of the task execution and data

flows across compute nodes. How the data flows are managed and how data and processors

are combined are critical to the system’s performance. For example, researchers find that

many performance problems of Hadoop can be attributed to its storage system for accessing

data [24, 58, 83]. vMR handles data through VOLUME to support efficient job execution.

The data flows among tasks in vMR are shown in Figure 6.2.

Input and output. Input and output are basic data flows for programs. Because many
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programs require storing the input and output persistently, vMR can be configured to read

the input and store the output on the persistent memory. Other programs or vMR jobs can

access the data with normal memory operations.

In-job data flows. Besides the input and output, another dataset during the vMR job is

the intermediate key/value pairs generated by the map tasks. MapReduce and Hadoop store

the intermediate data on the nodes’ local disks by I/O operations which increases the latency

of accessing the data. To efficiently maintain and service the intermediate data, vMR stores

the data in the non-persistent region of VOLUME and reduce tasks can access these data

with the memory addresses. With memory ranges distributed across many hosts, VOLUME

automatically transfers the accessed memory ranges from remote hosts to the host where

the task runs. Specifically, during the execution of a job with M map tasks and R reduce

tasks, a map task retrieves its split of input data from a memory range and stores the R pieces

of partitioned intermediate data (some pieces may be empty) into R memory ranges, and a

reduce task retrieves M pieces of intermediate data produced by the M map tasks and stores

the output into a memory range. In our current implementation, the network communication

for shuffling and the computation in reduce tasks on different VPC/VMCs are overlapped.

An alternative method is to implement the shuffle phase as depending tasks checking the

map tasks’ status codes and collect the intermediate key/value pairs from completed map

tasks. With the second method, the network communication for shuffling and the map task

execution are overlapped.

Cross-job data flows. Besides of the input, output and intermediate data handled by

MapReduce systems with the restricted programming model, many programs, particularly

those with multiple iterations, need to share data among tasks and jobs. On Hadoop, pro-

grams use the files in HDFS [11] for sharing data. To support sharing data among tasks

and jobs, we design the shared area mechanism which is flexible to use and provides strong

consistency guarantee based on VOLUME. The shared area sarea is a range of memory for

tasks to store shared data. The programs can use it as a program-specific data structure and

access structured data with low latency. The snapshot semantics of VOLUME makes the

state changes of sarea easy to be reasoned about: the changes to sarea by one task is visible
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to other tasks only after the task atomically commits successfully. Hence, a failed task’s

changes or a task’s intermediate changes to sarea will not be read by other tasks and the

sarea is always in a consistent state. In the implementation of k-means on vMR/VOLUME

as discussed in Section 6.4, we use sarea to store the centroids which are shared among

tasks across iterations of jobs in memory.

6.2.3 Atomic commits

To ensure correctness, the map and reduce tasks must commit their output atomically [42].

In the design from Dean et al., the atomic commit of the output of a map task relies on the

coordination of the master, and the atomicity of a reduce task output’s commit is guaranteed

by the atomic rename operation provided by the underlying file system [42]. vMR ensures

the atomic commits of map and reduce tasks’ output using the transactional semantics of

VOLUME discussed in Chapter 5, requiring neither a master nor assistance from the file

system. With the semantics of atomic commits, it is straightforward to implement backup

execution in vMR.

The requirement of atomic operations in MapReduce-like systems is one of the reasons

why VOLUME provides the transactional semantics. The atomic commits are useful or

critical for many other systems and applications in datacenters, such as key/value stores

and database-like systems [40, 41]. The atomicity semantics simplifies the failure handling,

makes it easy for programmers to reason about programs’ behavior, and enables backup

executions of tasks to improve performance and reliability.

6.2.4 Fault tolerance

With the atomic commits, the semantics of VOLUME in the presence of faults discussed in

Chapter 5 enables vMR to handle faults gracefully. The arrangement of vMR job executions

in the presence of failures is similar to MapReduce [42]. To assist handling faults in vMR,

we use the “system idle” signal mechanism which writes the current time to a memory range

when the system is idle. The depending tasks in vMR include the memory range for the
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signal into their memory dependence sets, and will be notified and made schedulable when

the system is idle. With the signal mechanism, vMR handles the cases of faults as follows.

• The map or reduce tasks fail. The depending task (mbarrier or rbarrier) identifies

the task as a failed one if it takes much more time than the other map tasks to complete

and re-runs the task. The time is read from the memory range for the “system idle”

signal. As vMR ensures atomic commits of map tasks, the depending task re-runs the

failed task as backup execution.

• The depending tasks fail. The depending tasks depend on the “system idle” signal

range to ensure that they will be eventually notified again even if one instance of the

task failed.

Some intermediate data may be lost because of the failures of some nodes. The current

implementation handles this fault by terminating the job and reporting the failure to the

program which may re-run the whole vMR job. A possible mechanism to handle this more

gracefully is that the reduce tasks requiring the lost intermediate data abort and update their

status codes to indicate the failure, and, according to the status codes, the rbarrier re-runs

the map tasks that generated the lost intermediate data and the aborted reduce tasks.

6.2.5 Implementation

vMR is implemented in c0 and compiled to an i0 program that runs on a MAZE. All the

memory accesses in vMR are automatically serviced by VOLUME. As vMR is built on

VOLUME and MAZE dispatches the tasks, the vMR implementation is compact, comprising

3083 lines of source code.

6.3 Computation in the big virtual machine

We measure MAZE’s mechanisms with microbenchmarks, compare MAZE’s performance

with Hadoop and X10’s, and inspect its scalability. We choose Hadoop and X10 for com-
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parison because they are representatives of two mainstream approaches to datacenter com-

puting and their implementations are relatively mature and optimized. Hadoop represents a

class of MapReduce-style programming frameworks such as Phoenix [80], Mars [54], CGL-

MapReduce [47] and MapReduce online [39], and has been used extensively by many orga-

nizations [10]. X10 represents a class of language-level solutions, including Chapel [31] and

Fortress [23], targeting “non-uniform cluster computing” environments [34].

We use several workloads to evaluate MAZE’s efficiency and scalability. We first de-

sign the prime-checker which uses 1000 tasks to check the primality of 1,000,000 numbers.

As the prime-checker is highly parallelizable, we use this arithmetic application to evalu-

ate the scalability of MAZE as we add more compute nodes—whether MAZE can achieve

near-linear speedup. To check MAZE’s performance on widely used and more complex

algorithms, we implement the k-means clustering algorithm [71]. The k-means program it-

eratively clusters a large number of 4-dimensional data points into 1000 groups. This reflects

known problem configurations in related work [60, 64, 97]. We run k-means on MAZE by

scaling the number of compute nodes and the size of datasets to evaluate MAZE’s scalability,

and compare to Hadoop and X10. Additionally, to examine how MAZE scales as the overall

memory usage grows, we implement and run teragen which produces the TeraSort [18] input

datasets of various sizes.

For each technical solution in comparison, we apply the highest performance setting

among the standard configurations. For example, X10 programs are pre-compiled to native

executable programs, and we write the x86-64-based microbenchmark programs in compar-

ison in the assembly language. Note that the platforms have different performance charac-

teristics. To make the performance comparison fair, we use the same dataset and equivalent

job configurations for Hadoop, X10 and MAZE.

On one physical host, the system overhead of MAZE is comparable to that of traditional

VMMs. On 16 physical hosts, the MAZE runs 10 times faster than MapReduce/Hadoop and

X10. On 160 compute nodes in the TH-1/GZ supercomputer, the MAZE delivers a 12.99x

speedup over the computation on 10 compute nodes. The implementation of MAZE also
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Table 6.1: Microbenchmark results

Benchmark Solution Time (second)

Native 7.13

Arithmetic and logic MAZE 7.14

operation Xen 7.14

VMware 7.35

Native 110.60

Memory operation MAZE 126.41

Xen 112.43

VMware 128.37

allows it to run above traditional VMMs, and we verify that MAZE shows linear speedup on

a parallelizable workload on 256 large EC2 instances.

6.3.1 Microbenchmarks

We run microbenchmarks to measure the virtualization overhead of MAZE and compare

the results with traditional virtual machine monitors. We also measure the overhead and

efficiency of creating tasks, executing tasks and memory fetching. In addition, we measure

the performance gains from register-based optimization.

Virtualization overhead. We design microbenchmarks to measure the overhead of CPU

and memory virtualization in MAZE. To assess the overhead of CPU virtualization, we mea-

sure the arithmetic and logic operation performance by a microbenchmark program that ex-

ecutes 234 add operations. Memory is another important subsystem in the MAZE, and we

shall verify that the distributed memory subsystem does not incur dramatic overhead on one

machine. We measure the memory operation performance with another microbenchmark

program that writes 229 64-bit integers (4 GB in total) to the memory for 256 times and then

read them for 256 times.

We implement the microbenchmarks in x86-64 assembly and i0, and execute the pro-

grams in Xen, VMware Player, native Linux, and a MAZE on the same physical host. To

achieve the best performance, the x86-64 assembly implementations heavily use registers.
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Table 6.2: Time for creating and executing a task

Operation Operation step Time (ms)

Create snapshot 0.4

Create the task 0.4

Create a task Update VPC 0.5

Overall 1.3

Create snapshot 0.4

Initialize VPC 0.4

Execute a task Update VPC 0.5

(empty task) Invoke the task 0.2

Commit snapshot 0.9

Overall 2.4

In the MAZE, the binary translator translates i0 instructions into x86-64 instructions during

the execution.

Table 6.1 shows the results of the microbenchmarks. From the results, we can see that

the virtualization overhead for arithmetic, logic and memory operation of MAZE is 0.1–

15% over native execution on the physical host, which is comparable to traditional VMMs.

In particular, MAZE exhibits even higher performance than VMware on one physical host.

For the memory microbenchmark, the time on MAZE includes 7.47 seconds for creating and

committing the memory snapshot for the task.

Task overhead. Task creation, scheduling, and termination are important and frequent

operations in a task execution engine. To examine MAZE’s performance in this aspect, we

measure the overhead of creating and executing a task. We use one parent task to create 1000

new empty tasks and execute these tasks. To measure the overhead accurately, we force the

tasking operation to be serial by conducting the experiment using one VPC on one compute

node so that we can obtain the completion time of each operation.

Table 6.2 shows the overhead of creating and executing a task and the time used in each

step. The results show that the overhead of creating and executing a task in a MAZE is

only several milliseconds. The small overhead enables MAZE to handle thousands of tasks

efficiently, and gives programmers the flexibility to use a large number of tasks as they want.
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Table 6.3: Execution time of the reader task

Configuration Time / CCMR Time / TH-1/GZ

(second) (second)

2 VPCs

(Remote memory fetching) 51.05 36.21

1 VPC

(Local memory fetching) 6.85 5.63

Memory fetching. We measure the efficiency of the memory operations across multiple

physical hosts by a writer-reader microbenchmark. The writer-reader microbenchmark pro-

gram consists of two tasks—one, the writer, writes 230 64-bit integers (8 GB in total) into the

SR, and the other one, the reader, reads these integers from the SR. We run the writer-reader

program on MAZEs that consist of one or two VPCs residing on one or two nodes respec-

tively to check the performance of memory fetching from the local node and the remote node

through the network.

Table 6.3 shows the results of the writer-reader microbenchmark. In the 1-VPC experi-

ment, it takes 6.85 seconds on CCMR and 5.63 seconds on TH-1/GZ for the reader to read

the data. Although providing the advanced snapshot semantics and keeping two versions

of the pages as discussed in Section 5.2, MAZE exhibits the page fault handling through-

puts of 3.1 × 105 and 3.7 × 105 page faults handled per second on CCMR and TH-1/GZ

respectively. The additional execution time in 2-VPC experiments is spent on the data trans-

mission through the network. Applying copy-on-write may potentially further improve the

performance.

Register-based optimization. To measure how much performance improvement a

program can achieve by using RAMRs, we develop a loop microbenchmark since loops are

very common in programs. The loop microbenchmark sums 4 × 1010 64-bit integers in

4× 1010 iterations. We implement the loop microbenchmark in i0 with and without putting

the iterator and accumulator in RAMRs. We also implement and optimize it in assembly

using physical registers on Linux for comparison.

Table 6.4 shows the execution time of loop on both MAZE and native Linux on the same
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Table 6.4: Execution time of loop

Time / Time /

Platform CCMR TH-1/GZ

(second) (second)

MAZE, using RAMRs 31.83 27.30

MAZE, without using RAMRs 171.81 147.34

Native Linux 31.79 27.28
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Table 6.5: Execution time of prime-checker on Hadoop and MAZE

Number of nodes 1 2 4 8 16

Hadoop (second) 16661 8352 4169 2090 1112

MAZE (second) 15795 7885 3950 1975 986

compute node. From the results, we can see that, after using RAMRs, loop uses only 18.5%

of the time of the other implementation not using RAMRs on both CCMR and TH-1/GZ.

The results also show that loop on MAZE using RAMRs produces very close performance

as the manually optimized one using physical registers on Linux on both CCMR and TH-

1/GZ. This indicates that the binary translator can generate high-quality native code and also

verifies the low virtualization overhead of MAZE.

6.3.2 Performance comparison

We run the performance evaluation programs with the same dataset on different numbers of
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compute nodes on the CCMR testbed to compare MAZE’s performance and scalability with

X10 and Hadoop’s.

Table 6.5 shows the time of prime-checker on Hadoop and MAZE. We scale the number

of compute nodes to 16 physical hosts. The results show that both Hadoop and MAZE scale

linearly as prime-check is easy to parallelize. For simple ALU-intensive workloads, both

MAZE and Hadoop are efficient, but MAZE provides slightly higher performance in spite of

its advanced instruction set features and memory model.

Figure 6.3(a) presents the execution time of k-means on Hadoop, X10 and MAZE with

1 and 16 compute nodes. The execution time on Hadoop and X10 is 11 times more than

that on MAZE on 1 compute node. As shown in this evaluation, MAZE quickly exhibits

superiority in efficiency as the complexity of application grows. The results on 16 compute

nodes show that MAZE is at least 13 times faster than Hadoop.

Figure 6.3(a) presents that MAZE exhibits tremendous speed gains over Hadoop and

X10, although Table 6.5 shows that MAZE only provides slightly better performance than

Hadoop with simple ALU-intensive workloads. This observation, in fact, illustrates the ad-

vantages of the MAZE technology. When the computation is composed of one or two stages

of easily parallelizable processing, the MapReduce/Hadoop frameworks can already accom-

plish algorithmically optimal performance. The MAZE can still provide slightly higher per-

formance due to its efficient instruction-level abstraction. Moreover, the MAZE quickly

outperforms existing technologies when the computation becomes more complex—i.e., con-

taining iterations, more dependence, or non-trivial logic flows, which are common cases in

programs. The system design of MAZE aims to provide strong support for general programs,

and the speed gains of MAZE shown in Figure 6.3(a) reflect i0’s generality, efficiency and

scalability.

One may argue that the comparison between programs written in C-like languages on

MAZE and Java-like languages on Hadoop is unfair. Indeed, the Java-like languages in-

troduce overhead and there are efforts to make use of native code to improve Hadoop’s

performance such as Hadoop C++ Extension (HCE) [8] which implements data processing
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stages of Hadoop in C++. However, HCE only improves Hadoop’s data processing perfor-

mance of MapReduce jobs by 20-41%. Therefore, the difference in linguistic features does

not decisively make a MAZE much faster.

It may also appear that the MAZE’s memory-based data processing is the only reason for

its superiority in performance. This is, in fact, an over-simplified view of the technical design

space. X10 also handles program data through memory with PGAS (Partitioned Global Ad-

dress Space) [34]. As shown in Figure 6.3(a), however, the MAZE is one order of magnitude

faster than both Hadoop and X10. In fact, disk I/O does not necessarily outweigh other fac-

tors, such as network bandwidth and CPU capacity, in a datacenter computing environment.

In our evaluation, we have implemented the same algorithm in all the three technologies and

applied salient optimizations for each of them—e.g., compiling X10 programs to native x86-

64 instructions—to ensure the workloads are comparable with the three implementations. It

is the holistic design and the simple yet effective mechanisms in the MAZE that lead to the

significant speedup over existing technologies, and it is the ISA-level abstraction that en-

ables such a design and the mechanisms. As the result, MAZE performs at least as well as

other technologies on all workloads, and delivers much better performance than others for

complex programs.

Figure 6.3(b) shows the speedups for three technologies as we scale the number of com-

pute nodes. All speedups are calculated with respect to the X10 performance on one compute

node for each workload. The speedup of the k-means computation on MAZE is near-linear

to the number of compute nodes used, which highlights the good scalability of the design and

implementation of MAZE. We can also observe that the overhead of MAZE is small, taking

into consideration the near-linear speedup and the fact that the execution time on MAZE in

the 16-node experiment is very short compared to the time on Hadoop or X10.

6.3.3 Scalability

A scalable system may be required to scale with the data size, the processor count, the

user population, or a combination of them. As user-scalability is not a goal of MAZE, our
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Figure 6.4: Scalability of MAZE with the data

evaluation focuses on the scalability with the data size and the number of compute nodes.

We run k-means on MAZE with 50 compute nodes on the CCMR testbed to evaluate

MAZE’s scalability with the dataset size by increasing the dataset from 12,800,000 points

to 204,800,000 points. Figure 6.13(a) presents the execution time and throughput which is

calculated by dividing the number of points by the execution time. The result shows that,

on the same number of compute nodes, the execution time grows more slowly than linear

growth with the dataset size while the throughput increases. Hence, MAZE scales well with

the dataset size.

To examine how MAZE performs when the total memory usage grows, we run teragen

on 32 compute nodes to generate data in the SR with increasing sizes. We stress the memory

subsystem using physical memory only by generating data of up to 768GB which reaches the

capacity of the 32 compute nodes’ overall available physical memory. Figure 6.13(b) shows

the execution time and throughput of teragen. The throughput is approximately the same

as the total data generated increases from 128GB to 768GB, indicating MAZE’s memory

subsystem scales well with increasing memory usage.

To evaluate MAZE’s scalability and also examine MAZE’s performance in a public

cloud, we run the prime-checker on a MAZE running on Amazon EC2 with up to 256 virtual

machine instances. Figure 6.5(a) shows the execution time and speedup with respect to the

performance on one instance. The results show that the MAZE scales very well to 256 com-
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pute nodes—the speedup is near-linear as we increase the number of instances. Our ability

to perform experiments with larger-scale and more sophisticated workloads was limited by

the concurrent instance cap stipulated by EC2. In the mean time, the current result on 256

instances already shows that, although prime-checker is a relatively easy-to-parallelize pro-

gram, the i0 architecture and the MAZE design easily scale to hundreds of compute nodes

without showing signs of slowdown or obvious system bottlenecks. The experiment on EC2

also proves the good portability of MAZE in a virtualized environment, and that the MAZE

can be used independently of or in combination with traditional virtual machine monitors.

6.3.4 Performance on the TH-1/GZ supercomputer

To examine the performance and scalability of MAZE in high-performance computing envi-

ronments, we run k-means on the TH-1/GZ supercomputer with 10 to 160 compute nodes.

The input dataset consists of 204,800,000 points.

Figure 6.5(b) shows the execution time and speedup of k-means on TH-1/GZ. The speedup

is calculated with respect to the execution time on 10 compute nodes on TH-1/GZ. For com-

parison, we also show the execution time and speedup of k-means on CCMR with 50 com-

pute nodes in Figure 6.5(b). The performance of the MAZE on 50 compute nodes on CCMR

is between the performance of MAZE on 10 and 20 nodes on TH-1/GZ. Although these two
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platforms have different performance characteristics, the results verify that MAZE can de-

liver efficient performance in different environments. From the results, we can see that when

we scale the compute nodes from 10 to 160, the speedup of MAZE also increases to 12.99,

which indicates that MAZE scales well in the supercomputing environment.

The experiments of MAZE on TH-1/GZ show that, although originally designed for dat-

acenter environments, MAZE is portable to run on HPC platforms, conducting computation

efficiently and scaling well. These results also suggest a potential of using cloud system

software for high-performance computing.

6.4 Improved data substrate

We also measure the performance, scalability and overhead of VOLUME, and compare

VOLUME with Hadoop and Spark using 4 diverse and widely used workloads: word count,

a MapReduce benchmark [42, 47, 57, 80, 91, 96], k-means clustering, a data mining work-

load [38, 98], adjacency list, a graph processing workload [48], and sort, a benchmark for

data processing systems [19, 42, 75, 92]. Following identical algorithmic designs suitable

for the programming models, we implement the benchmark programs or use standard imple-

mentations on vMR/VOLUME, Hadoop and Spark.

Word count counts the number of occurrences of each unique word in a set of documents,

which can also represent a large subset of real-world MapReduce jobs that extracts a small

amount of interesting data from a large dataset [42]. Although word count can fit into the

MapReduce programming model well, Yoo et al. find that the scalability of word count on the

shared-memory MapReduce on a single machine depends on the scalability of the memory

management service in the OS [91]. As vMR is also built on a shared-memory model, we

use word count to evaluate the performance and scalability of vMR and VOLUME. We

implement word count following the implementation described by Dean et al. and the one in

Hadoop distribution [2, 42]. The dataset for the word count is the 15GB text content of the

static HTML dump of English Wikipedia in June of 2008 [20].
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K-means clustering is an algorithm commonly used for data mining to iteratively parti-

tion a dataset into k clusters [71], which is one example of the set of algorithms that require

iterative computation. Our implementations of k-means clustering mainly follow that of Ma-

hout [3], and we adopt relevant optimizations used in related work [38, 98]. The centroids

shared by tasks across iterations are stored in the sarea on VOLUME. The datasets are a

large number of 4-dimensional data points which are randomly generated by the standard

gensort record generator for TeraSort [18]. We cluster the data points into 1000 groups and

make each k-means experiment compute for 20 iterations.

Adjacency list generates the adjacency and reverse adjacency lists of nodes in a graph

with the edges as its input. Adjacency list can prepare the graph to be used by PageRank-like

computation [63]. Adjacency list is a shuffle-heavy workload that transfers data more than

twice the size of the input across the network. Two input datasets are generated following

the power law as recommended in the related work [48], and contain around 100 million

(30GB) and 500 million (150GB) vertices with an average out-degree of 7.2. We implement

adjacency list on vMR following the implementation on Hadoop by Ahmad et al. [48].

Sorting is an important part of many computing tasks. Our implementation of the sort

program on vMR/VOLUME follows the implementation on MapReduce [42]. The imple-

mentation on Hadoop for comparison is the terasort program from the Hadoop release. We

generate sort’s input consisting of 100-byte records with 10-byte keys by a program, teragen,

which produces the same dataset for the TeraSort benchmark [18].

Although some of the workloads on vMR we used here are “embarrassingly parallel”, the

design and implementation of vMR itself shows that a relatively sophisticated program with

barriers, atomic commits, data shuffling, cross-job data sharing and backup execution can

be easily and efficiently implemented using the mechanisms of MAZE. As i0 can express

any computational logic, more sophisticated programs can be implemented on MAZE. To

achieve best performance, programmers should design “good” programs to make best use of

i0 and VOLUME’s mechanisms as discussed in Section 5.8.

During the evaluation, we configure the HDFS to store only one copy of data to avoid
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additional cost of data replication for Hadoop. This configuration minimizes the I/O con-

tention to which Hadoop is more sensitive. We allocate 1 map task slot and 1 reduce task

slot on each node for Hadoop which requires static slot allocation for map and reduce tasks

on each compute node, while we run only 1 task on each compute node for VOLUME and

Spark.

6.4.1 Performance of unifying physical memory and disks

As VOLUME unifies the physical memory and disks on many nodes connected through the

network, we measure its performance with different sizes of datasets that can be processed

totally or partially in physical memory.
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Figure 6.7: Speedups on VOLUME and Hadoop

We first run sort on 50GB input using 16 nodes to evaluate VOLUME’s performance

when the intermediate dataset can be processed in physical memory. We also run sort on

both Hadoop and Spark for comparison. The input is on disks managed by HDFS for Hadoop

and Spark or the persistent memory for VOLUME, and the output is written back to disks.

To emulate a solution that uses the file system based systems and stores data in memory,

we also set up Hadoop in the Linux ramdisk /dev/shm. As shown in Figure 6.6(a), both

Spark and VOLUME outperform the file system based Hadoop that stores data on disks or

in memory (Hadoop/RAM). These three systems share the similar overall structure of the

execution organization and we break down the time as shown in Figure 6.6(b). We also

run k-means, word count and adjacency list on the CCMR to evaluate the scalability and
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Number Hadoop VOLUME

of nodes (second) (second)

8 27261.75 3610.83

16 14295.00 1882.50

32 7835.82 1032.26

(a) Execution time of k-means clustering
on 30 million points
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Figure 6.8: Performance of VOLUME on datasets of moderate sizes

performance of VOLUME on datasets of moderate sizes. Figure 6.7 and Figure 6.8 show the

execution time, throughput and speedups. As shown in the results, VOLUME scales better

and exhibits superiority in efficiency than the file system based solution.

Understanding the performance. VOLUME accelerates the computation in several as-

pects: low-latency operations on the intermediate data and small system overhead, efficient

sharing of data among tasks and jobs and efficient support to input and output. We find two

of those are most effective. First, VOLUME transparently helps the program save part of

the input and intermediate data generated by map tasks in memory and significantly accel-

erates data exchange in the shuffle phase. For sort, VOLUME and Spark/RDD that store

intermediate data in memory [94] deliver more than 8 times higher performance for the map

or the input phase than Hadoop that stores the intermediate data in local file systems. For the

shuffle-intensive adjacency list workload, VOLUME delivers 6 to 11 times higher through-
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(b) Execution time of adjacency list on 2 nodes
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Figure 6.9: VOLUME memory usage

put. For the iterative workload k-means, VOLUME stores the input dataset (after the first

iteration) and centroids in memory and delivers 7.5 times as high performance as that on

Hadoop. Second, VOLUME supports efficient saving of the results by allowing programs

to directly store data structures in the persistent memory and commit the changes without

the need of converting objects in files from the file system to in-memory data structures and

vise versa. The sort program on RDD first stores the sorted data in an RDD and then saves

it to HDFS. From Figure 6.6(b), VOLUME finishes the sorting and output emission in the

similar amount of time that Spark uses for sorting data and generating the RDD of the sorted

data. Spark takes additional 222 seconds to store the data to HDFS. Through these mecha-

nisms, VOLUME delivers significant higher performance, especially for iterative workloads
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and workloads that generate intermediate data that are much larger than the input data, and

also improves the performance of workloads that are compute or disk I/O intensive, such as

word count and sort.
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Figure 6.10: VOLUME memory usage of adjacency list on 4 nodes

To evaluate VOLUME’s performance with different amounts of data stored on disks, we

stress it by running adjacency list on 2 compute nodes that have 64GB physical memory in

total which is far less than the overall data in VOLUME during the execution of adjacency

list. We examine the memory usage and compare the execution time of adjacency list on

VOLUME and Hadoop. Figure 6.9(a) shows the VOLUME usage on 2 nodes. We can see
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Input size Execution time Throughput

(GB) (second) (MB/sec)

256 850.7 300.9

320 1969.9 162.5

400 3666.4 109.1

512 6926.6 73.9

(a) Sort on 32 nodes
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(b) Sort 400GB data on 32 nodes

Task Execution time Page fault handling time

order (second) (second)

0 37.21 6.29

1 38.29 4.03

2 42.51 4.38

3 48.26 4.98

4 0.05 0.048

5 449.72 310.20

6 961.31 823.40

7 1048.15 875.72

(c) Task execution time and page fault handling time on one
node for sorting 400GB data

Figure 6.11: Execution time, throughput and memory usage of sorting
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Figure 6.12: Progress of sorting 512GB data

that the physical memory usage increases to around 64GB quickly in around 665 seconds.

After that the usage of disk space keeps increasing on both nodes at a lower rate than the

previous ones. This shows that, when the data size exceeds the memory capacity, VOLUME

transparently swaps data between DRAM and hard disks, providing a lower data access

speed, but ensures the success of the computation. Figure 6.9(b) shows the execution time.

Although disks are heavily used by VOLUME to store data, VOLUME exhibits more than 6

times higher performance than Hadoop. The map phase on VOLUME uses less than 1/20 of

the time than Hadoop’s map phase takes, which shows the efficiency of data inputting and

intermediate data handling in VOLUME. The reduce phase on VOLUME takes much less

time than that needed by the reduce phase on Hadoop. This shows that the cost for memory

swapping in VOLUME is smaller than the file system based solution in Hadoop. As shown in

Figure 6.9(c), when there are more than 8 compute nodes, all the data can fit into the physical

memory, which is why it shows superlinear speedups in Figure 6.7(b). Figure 6.9 also shows

that the memory footprint of workloads in datacenters may be multiple times larger than the

input, which requires large capacity of the data substrate. For these workloads, VOLUME is

more cost-effective than physical memory based systems.

In addition to making use of disks to store data when the overall physical memory is

not sufficient, VOLUME can also handle situations where the cluster has non-uniform phys-

ical memory capacity distribution among nodes. To check how VOLUME performs when

the cluster has a heterogeneous physical memory capacity distribution, we run adjacency
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(c) Execution time and throughput of k-
means as the dataset grows

Platform Execution Per-node

/ number time throughput

of nodes (second) (MB/sec)

CCMR

32 nodes 2039.85 2.30

TH-1/GZ

84 nodes 752.17 2.37

(d) Execution time of adjacency list on
150GB input

Figure 6.13: Scalability of VOLUME on large datasets and many compute nodes

list on one 4-node cluster where one node has 24GB physical memory and the other three

have 32GB physical memory and another 4-node cluster where all nodes have 32GB phys-

ical memory. Figure 6.10 shows the memory usage of adjacency list on these 2 clusters.

Comparing these 2 memory usage patterns, we can see that VOLUME can adapt to different

physical memory distribution well and makes use of more disks to handle data on nodes that

have smaller physical memory capacity.

To check how VOLUME performs when the total memory usage is much larger than the

overall physical memory and disks are extensively used at a large scale, we scale the input

size for sort to 512GB on VOLUME with 32 compute nodes. Figure 6.11(a) shows the exe-

cution time and throughput. As the dataset scales up, the throughput decreases because the

percentage of data handled by disks increases and the virtual memory access speed in VOL-
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UME decreases. We measure the VOLUME usage during running sort on a 400GB dataset

as shown in Figure 6.11(b). From the memory usage, we can see that physical memory of

the 32 compute nodes is used up and around 300GB disk space is used for swapping in total

when sorting the 400GB data. We plot the task execution time and page fault handling time

on one node for sorting 400GB data in Figure 6.11(c). Task 0 to 3 are map tasks which read

around 12.5GB of input from the persistent memory and store the intermediate data in the

memory on the local VMCs. Hence, page fault handling which mainly reads data from disks

to physical memory takes around 12% of the overall execution time of these tasks. Task 4

is a mbarrier depending task instance which checks the status of the map tasks in memory

ranges fetched from local and remote VMCs. Task 4 shows that the barrier task implemented

as depending task is very efficient although it checks every map task’s status. Task 5 to 7 are

the reduce tasks which fetch around 12.5 GB of intermediate data from other VMCs. Hence,

the page fault handling which mainly fetches pages from physical memory on remote VMCs

to local physical memory through the network takes around 82% of the overall execution

time of these tasks. Task 6 takes around 510 more seconds than task 5 and the additional

time is spent on page fault handling, while task 7 takes slightly more time than task 6 takes.

The result shows that the physical memory is already used up (after around 600 seconds in

Figure 6.11(b)) before the execution of task 6 and VOLUME uses disks for handling new

data at a lower speed.

To look into how the usage of disks affect tasks’ execution time, we plot the execution

time of tasks during sorting 512GB data in Figure 6.12. Each arrow in the figure represents

a task. The map phase consisting of 250 tasks in total completes in 360 seconds, which

shows that VOLUME can efficiently service the input from disks. After reading the input,

the reduce tasks start to run and those started after the 2000th seconds take longer time to

complete, which demonstrates that VOLUME can smoothly handle large datasets in disks

and gracefully decrease the performance. Figure 6.12 also shows that there are stragglers.

Starting backup executions of them as discussed in Section 5.5 may further improve the

overall performance.
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6.4.2 Scalability

To evaluate VOLUME’s scalability on many nodes, we conduct experiments of k-means and

word count on the TH-1/GZ supercomputer using up to 160 compute nodes. Figure 6.13(a)

shows the execution time and speedup of k-means that processes 300 million points. We

can see that k-means scales linearly as we scale the compute nodes number from 10 to 160.

This shows the good scalability of VOLUME. Figure 6.13(b) shows the execution time and

speedup of word count. The execution time decreases as we scale the number of compute

nodes and word count scales near-linearly on 10 to 40 nodes. However, the speedup is sub-

linear on more than 40 nodes and the time for reduce tasks does not change much on 40

to 160 nodes. This is because the number of reduce tasks in word count is configured to

30 since the data in the reduce phase are relatively small for the datasets we used and the

additional nodes do not improve the reduce phase’s parallelization. The execution time of

the map phase decreases with more nodes and word count executes faster.

To evaluate how VOLUME performs as the dataset grows, we run k-means with 30 com-

pute nodes on datasets of varying sizes from 25GB to 400GB. As shown in Figure 6.13(c),

the time increases proportionally to dataset sizes and the throughput remains mostly stable,

indicating that VOLUME scales smoothly with the data size.

To examine the efficiency of VOLUME on supporting shuffle-heavy tasks and the perfor-

mance of VOLUME in HPC environments, we run the adjacency list workload with 150GB

input. Figure 6.13(d) shows the execution time of adjacency list in the CCMR and TH-1/GZ.

We can see that the per-node throughput on TH-1/GZ is higher than that on the CCMR,

thanks to the high-performance hardware.

6.4.3 Storing data persistently and recovery

To investigate the capability of VOLUME to store large data persistently and the time for re-

covering the VOLUME in the presence of faults, we run teragen to perform parallel I/O with

8TB data on 30 nodes and force the home to restart the VOLUME to emulate crashes. As
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VOLUME maintains a one-to-one mapping of disk blocks to memory pages in the persistent

memory, recovering the VMCs is very fast. Hence, we only measure the time for recovering

the home.

Table 6.6: Time for writing persistent data and recovering the home service

Data size Generating Commit Recovery

8TB 6874.8s 129.3s 145.0s

TABLE 6.6 shows the time for generating the datasets and the time used by the home

service for committing snapshots and recovering the metadata after being restarted. Although

much of the time is for generating the random input, the per-node throughput for generating

8TB data is 38.8MB/s which is about 50% of the raw disk I/O throughput in our cluster. The

time used by the home service for committing the 8TB data changes takes 2.8% of the overall

execution time, delivering a 61.9GB/s throughput. This shows that the home service is very

efficient to support commit requests at a high aggregate rate. For recovery, the home takes

145 seconds for recovering the metadata from the log for the persistent memory storing 8TB

data. Applying certain techniques, such as checkpointing, can improve the recovery speed.
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CHAPTER 7

CONCLUSION

In this thesis, we first investigate the limitation of traditional disk-based systems. We an-

alyze the limitations of MapReduce using parallel compilation as a probing case handling

moderate-size data with dependences among numerous computational steps, and investigate

the performance and challenges of in-memory data processing.

To support general large-scale data processing in datacenters, we organize the in-memory

data processing in many compute nodes by presenting programmers an illusion of a big vir-

tual machine. We design a new instruction set architecture, i0, to unify myriads of compute

nodes to form the big virtual machine called MAZE, and present programmers the view of

a single computer where thousands of tasks run concurrently in a large, unified, and snap-

shotted memory space. The MAZE provides a simple yet scalable programming model and

mitigates the scalability bottleneck of traditional distributed shared memory systems.

We construct VOLUME, a distributed virtual memory as a system-wide data substrate

and the memory subsystem of MAZE. VOLUME provides a general memory-based abstrac-

tion with transactional semantics, takes advantage of DRAM in the system to accelerate

computation, and, transparently to programmers, scales the system to handle large datasets

by swapping data to disks and remote servers for general-purpose computation in datacen-

ters. Along with the efficient execution engine, VOLUME enables the MAZE to scale up to

support efficient computation on large datasets.

We have implemented and evaluated MAZE on various platforms and environments. On

VOLUME, we implemented vMR with enhanced functionality and high performance. Our

evaluation shows that MAZE has excellent performance and scalability.
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