DVM: Towards a Datacenter-Scale Virtual Machine

Lin Gu

Department of Computer Science and Engineering
The Hong Kong University of Science and Technology
Hong Kong

{zma,szh,lingu} @cse.ust.hk

Zhiqiang Ma Zhonghua Sheng

Abstract

As cloud-based computation becomes increasingly important, pro-
viding a general computational interface to support datacenter-
scale programming has become an imperative research agenda.
Many cloud systems use existing virtual machine monitor (VMM)
technologies, such as Xen, VMware, and Windows Hypervisor, to
multiplex a physical host into multiple virtual hosts and isolate
computation on the shared cluster platform. However, traditional
multiplexing VMMs do not scale beyond one single physical host,
and it alone cannot provide the programming interface and cluster-
wide computation that a datacenter system requires. We design a
new instruction set architecture, DISA, to unify myriads of com-
pute nodes to form a big virtual machine called DVM, and present
programmers the view of a single computer where thousands of
tasks run concurrently in a large, unified, and snapshotted mem-
ory space. The DVM provides a simple yet scalable programming
model and mitigates the scalability bottleneck of traditional dis-
tributed shared memory systems. Along with an efficient execution
engine, the capacity of a DVM can scale up to support large clus-
ters. We have implemented and tested DVM on three platforms,
and our evaluation shows that DVM has excellent performance in
terms of execution time and speedup. On one physical host, the sys-
tem overhead of DVM is comparable to that of traditional VMMs.
On 16 physical hosts, the DVM runs 10 times faster than MapRe-
duce/Hadoop and X10. On 256 EC2 instances, DVM shows linear
speedup on a parallelizable workload.

Categories and Subject Descriptors D.1.3 [PROGRAMMING
TECHNIQUES]: Concurrent Programming—Parallel program-
ming; C.2.4 [COMPUTER-COMMUNICATION NETWORKS]:
Distributed Systems

General Terms Design, Performance, Experimentation

Keywords Datacenter, Virtualization, Cloud Computing

1. Introduction

Emerging as a paradigm shifting technology, cloud-based compu-
tation has demonstrated tremendous capability in web applications
and a wide range of computational tasks, such as business intel-
ligence, bioinformatics, computational finance, chemical analysis,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

VEE’12, March 3-4, 2012, London, England, UK.
Copyright © 2012 ACM 978-1-4503-1175-5/12/03. .. $10.00

39

Liufei Wen

Huawei Technologies
Shenzhen, China

{wenliufei,nicholas} @huawei.com

Gong Zhang

and environmental sciences [17, 18, 21, 42, 43], especially for pro-
cessing large data sets [10, 20, 27]. Cloud-based systems rely on
abundantly provisioned datacenters strategically distributed in geo-
graphic regions [7, 24]. A datacenter usually contains tens of thou-
sands of compute servers made of commodity hardware, employs
high-bandwidth switching networks, and often utilizes virtualiza-
tion and distributed services to manage resources and provide a
scalable computing platform [1, 2, 10].

It is believed that virtualization is a fundamental component
in cloud technology. Particularly, ISA-level virtual machine mon-
itors (VMM) are used by major cloud providers for packaging re-
sources and enforcing isolation [1, 3], sometimes providing under-
lying support for higher-level language constructs [2]. However,
the traditional VMMs are typically designed to work on a single
physical host and multiplex it to be several virtual machine in-
stances [8, 30, 46]. Though it is possible to build management or
single system image (SSI) services to coordinate multiple physical
or virtual hosts [12, 38, 46], they fall short of providing the func-
tionality and abstraction that allow users to develop and execute
programs as if the underlying platform were a single big “com-
puter” [9]. Extending traditional ISA abstractions beyond a sin-
gle machine has only met limited success. For example, VNUMA
extends the IA-64 (Itanium) instruction set to a cluster of ma-
chines [14], but finds it necessary to simplify the memory operation
semantics and shows difficulty in scaling to very large clusters.

On the other hand, exposing the distributed detail of the plat-
form to the application layer leads to increased complexity in
programming, decreased performance, and, sometimes, loss of
generality. In recent years, application frameworks [20, 27] and
productivity-oriented parallel programming languages [4, 15, 40,
48] have been widely used in cluster-wide computation. For ex-
ample, MapReduce and its open-source variant, Hadoop, are per-
haps the most widely-used application framework in the datacen-
ter environment [34]. Without completely hiding the distributed
hardware, MapReduce requires programmers to partition the pro-
gram state so that each map and reduce task can be executed on
one individual host, and enforces a specific control flow and de-
pendence relation to ensure correctness and reliability. This leads
to a restricted programming model which is efficient for “embar-
rassingly parallel” programs, where data can be partitioned with
minimum dependence and thus the processing is easily paralleliz-
able, but makes it difficult to design sophisticated and general ap-
plications [21, 34, 41, 47]. The language-level solutions, such as
X10 [15], Chapel [13] and Fortress [4], are more general and give
programmers better control over the program logic flows, paral-
lelization and synchronization, but the static locality, programmer-
specified synchronization, and the linguistic artifacts influence such
solutions to perform well with one set of programs but fail to deliver
performance, functionality, or ease-of-programming with another.
It remains an open problem to design an effective system architec-

ture and programming abstraction to support general, flexible, and
concurrent application workloads with sophisticated processing.

Considering that ISAs indeed provide a clearly defined interface
between hardware and software and allow both layers to evolve and
diversify, we believe it is effective to unify the computers in a dat-
acenter at the instruction level, and present the programmers the
view of a big virtual machine that can potentially scale to the en-
tire datacenter. The key is to overcome the scalability bottleneck
in traditional instruction sets and memory systems. Hence, instead
of porting an existing ISA, we design a new ISA, Datacenter In-
struction Set Architecture (DISA), for datacenter-scale computa-
tion. Through its instruction set, memory model and parallelization
mechanism, the DISA architecture presents the programmers an ab-
straction of a large-scale virtual machine, called the DISA Virtual
Machine (DVM), which runs on a plurality of physical hosts inside
a datacenter. It defines an interface between the DVM and the soft-
ware running above it, and ensures that a program can execute on
any collection of computers that implement DISA.

Different from existing VMMs (e.g. VMware [46], Xen [8],
vNUMA [14]) on traditional architectures (e.g., x86), DVM and
DISA make design choices on the instruction set, execution engine,
memory semantics and dependence resolution to facilitate scalable
computation in a dynamic environment with many loosely cou-
pled physical or virtual hosts. There are certainly many technical
challenges in creating an ISA scalable to a union of thousands of
computers, and backward compatibility used to constrain the ap-
plication of new ISAs. Fortunately, the cloud computing paradigm
presents opportunities for innovations at this basic system level—
first, the datacenter is often a controlled environment where the
owner can autonomously decide internal technical specifications;
second, major cloud-based programming interfaces (e.g., RESTful
APIs, RPC, streaming) require minimum instruction-level compat-
ibility; finally, there is only a manageable set of “legacy code”. The
goals of our design of DVM are:

e General. DVM should support the design and execution of
general programs in datacenters.

e Efficient. DVM should be efficient and deliver high perfor-
mance.

e Scalable. DVM should be scalable to run on a plurality of hosts,
execute a large number of tasks, and handle large datasets.

e Portable. DVM should be portable across different clusters
with different hardware configurations, networks, etc.

e Simple. It should be easy to program the DVM; DISA should
be simple to implement.

With the design goals stated, we revisit the approach and ra-
tionale of unifying the computers in a datacenter at the ISA layer.
The programming framework, language, and system call/API are
also possible abstraction levels for large-scale computation. How-
ever, as aforementioned, the frameworks and languages have their
limitations and constraints. Hence, they fall short of providing
the required generality and efficiency. Using system calls/APIs
to invoke distributed system services can be efficient and reason-
ably portable. However, an abstraction on this level creates di-
chotomized programming domains and requires the programmers
to explicitly handle the complexity of organizing the program logic
around the system calls/APIs and filling any semantic gap, which
fails to provide the illusion of a “single big machine” to the pro-
grammers and leads to a far less general and easy-to-program ap-
proach than what we aim to. The existing ISAs, designed for a sin-
gle computer with up to a moderate number of cores, can hardly
provide the scalability required by the “machine” that scales to the
datacenter size. On the other hand, the design of the DVM is mo-
tivated by the necessity of developing a next-generation datacen-
ter computing technology that overcomes several important lim-
itations in current solutions. The DVM should provide the basic

40

DVM 1 DVM 2
(Scheduler) ((Scheduler]
ARC ARC ARC ARC ARC ARC

Physical host 1 Physical host 2

D RComp

Figure 1. DVM architecture. Two DVMs run on top of three phys-
ical hosts in this example.

Physical host 3

é Runner

program execution and parallelization substrate in this technology,
and should meet all the goals on generality, efficiency, scalability,
portability, and ease-of-programming (with compilers’ help). This
leads us to choose the ISA layer to construct a unified computa-
tional abstraction of the datacenter platform. To break the scalabil-
ity bottleneck in traditional ISAs and retain the advantages of gen-
erality and efficiency, we design the new ISA, DISA, and build the
DVM on this architecture. The design of DISA, the DVM system,
and the evaluation of these designs (refer to Section 5) show that
the performance of the programs benefits much from the ISA-level
abstraction.

We implement the DVM on top of commodity computers and
virtual machines, and evaluate it on several platforms with a set of
workloads. The results show that DVM can be more than 10 times
faster than Hadoop and X10 on certain workloads with moderately
iterative logic, and that DVM scales well with near-linear speedup
up to at least 256 compute nodes with parallelizable workloads.

The structure of this paper is as follows. We give an overview
of DVM in Section 2. Section 3 presents the designs of DISA,
memory space, runners, scheduling, etc. Section 4 describes the
implementation. We show the evaluation results in Section 5, and
discuss related work in Section 6. Section 7 concludes the paper
and discusses future work.

2. System overview

The architecture of DVM is shown in Figure 1. A DVM runs on top
of one, multiple, or many physical hosts. We abstract a group of
computational resources including processor cores and memory to
be an available resource container (ARC). In its simplest form,
an ARC is a physical host. However, it can also materialize as
a traditional virtual machine or other container structure, given
the container provides an appropriate programming interface and
adequate isolation level. Although one ARC is exclusively assigned
to one DVM during one period of time, the ARCs in one physical
host may belong to one or more DVMs and one DVM'’s capacity
can be dynamically changed by adding or removing ARCs to or
from the DVM as needed. Hence, the capacity of a DVM is flexible
and scalable—a DVM can share a single physical host with other
DVMs, or exclusively include many physical hosts as its ARCs.

2.1 System organization

A DVM accommodates a set of tasks running in a unified address
space. Depending on the required resources, multiple DVMs can
co-exist on a single physical host, or a single DVM may scale to
run on a large number of physical hosts. Although DVMs may
have different capacity and the size of a DVM can grow to very
large, the DVMs provide the same architectural abstraction of a
“single computer” to programs through the Datacenter Instruction
Set Architecture (DISA). The programs in DVMs are in DISA

Table 1. DISA instructions

Instruction Operands Effect

mov DI, M1 Move [DI1] to M1

add DI, D2, M1 Add [D1] and [D2]; store the result in M1

sub DI, D2, M1 Subtract [D2] from [D1]; store the result in M1

mul DI, D2, M1 Multiply [D1] and [D2]; store the result in M/

div D1, D2, M1 Divide [D1] by [D2]; store the result in M/

and DI, D2, M1 Store the bitwise AND of [D/] and [D2] in M1

or D1, D2, M1 Store the bitwise inclusive OR of [D/] and [D2] in M1
XOr DI, D2, M1 Store the bitwise exclusive OR of [D/] and [D2] in M1
br DI1, D2, M1 Compare [DI] and [D2]; jump to M1 depending on the comparing result
bl M1, M2 Branch and link (procedure call)

newr M1, M2, M3, M4 Create a new runner

exit Exit and commit or abort

M means this operand is a memory address; D means this operand is a memory address or immediate value; [D] means the immediate value (when D is an immediate value) or the

value stored in the memory address (when D is a memory address)

instructions and a program running inside a DVM instantiates to
be a number of tasks called runners executing on many processor
cores and computers.

Inside an ARC, many runners, each residing in one runner
compartment (RComp), can execute in parallel. The RComp is a
semi-persistent facility that provides various system functions to
runners and the meta-scheduler (discussed later) to facilitate and
manage runners’ execution. Specifically, the RComp accepts the
meta-scheduler’s commands to prepare and extend runners’ pro-
gram state and start runners, helps the memory subsystem handle
runners’ memory accesses, facilitates the execution of instructions
such as newr (see Table 1), sends scheduling-related requests to
the meta-scheduler, and provides I/O services. As these functions
are tightly correlated with other subsystems of DVM, we introduce
pertinent details of the RComp design along with the treatise of the
other system components in Section 3. Suffices it at present to un-
derstand that one RComp contains at most one runner at a specific
time, and it becomes available for assigning a new runner to after
the current incumbent runner exits.

The DVM contains an internal meta-scheduler (or, simply,
scheduler) to schedule tasks (runners) executing in RComps. The
scheduler is a distributed service running on all constituent hosts
of a DVM, with one scheduler master providing coordination and
serialization functions. The scheduler dispatches runners to exe-
cute in RComps, prepares runners’ memory, and handles runners’
requests to create new runners.

2.2 Programming in DISA

In this section, we use one example to illustrate how to write
a simple program on a DVM using DISA. Details of the DISA
architecture will be introduced in Section 3, and a more complex
example will be introduced in Section 4.2.

The following DISA code performs a sum operation of two 64-
bit integers by a sum_runner runner. The starting address of the
memory range storing the two integers is in 0x100001000, and the
result’s address is in 0x100001008. The lines starting with “#” are
comments and the runners’ names are in italic.

sum_runner:
add (0x100001000):q, 8(0x100001000), (0x100001008)

:q indicates 64-b data
set exit code

exit and commit

mov:z $1:q, 8(0x100001008):q
exit:c

With an emphasis on instruction orthogonality, DISA allows the
instruction to freely choose memory addressing modes to reference
the first and second operands. The second instruction sets the exit

code to indicate the result is ready (:z means “zero extend”). The
last instruction makes the runner exit and commit (: c) the changes.

41

3. Design

We design DISA as a new ISA targeting a large-scale virtual ma-
chine running on a plurality of hosts connected through the network
inside a datacenter and build the DVM above this architectural ab-
straction. In this section, we first introduce the design of DISA’s
instructions then present DISA’s memory model in Section 3.2 and
the parallelization mechanism in Section 3.3.

3.1 DISA

Given the system goals of the DVM design as listed in Section 1,
the goals of the DISA are as follows.

1. DISA should support a memory model and parallelization
mechanism scalable to a large number of hosts.

2. DISA programs should efficiently execute on common comput-
ing hardware used in datacenters, which are usually made of
commodity products. Certain hardware may provide native sup-
port to DISA in the future, although we emulate DISA instruc-
tions using x86-64 instructions in our current implementation.

3. DISA instructions should be able to express general application
logic efficiently.

4. DISA should be a simple instruction set with a small number of
instructions so that it is easy to implement and port.

5. DISA should be Turing-complete.

In summary, DISA should be scalable, efficient, general, simple,
and Turing-complete. To ensure programmability, simplicity and
efficiency, DISA, as shown in Table 1, includes a selected group
of frequently used instructions. The newr and exit instructions in
DISA facilitate construction of concurrent programs with a plural-
ity of execution flows.

We show the Turing completeness of DISA by using DISA to
emulate a Turing-complete subleq machine [39]. The emulator ac-
cepts an arbitrary subleq program and generates the correspond-
ing output. The DISA implementation is as follows (each subleq
instruction is encoded as a triple of 64-bit integers representing its
three parameters).

loop: mov:z (pc):q, addrl:q

mov:z 8(pc):q, addr2:q

sub (addr2):q, (addrl), (addr2)
br:1 $0:q, (addr2), next

mov:z 16(pc):q, addr3:q

mov (addr3):q, pc

br:j loop

add pc:q, $24, pc

br:j loop

next :

Here pc, addrl, addr2 and addr3 are mnemonic names of
the addresses of special variables used by the emulator. pc ini-
tially points to the start address of the input subleq program. The
third instruction means “jump to next if 0 is less than the value in

s T
|

Shared
Region
(SR)

memory
ranges

Page 4
Page 3
Page 2
Page 1
Page 0

Memory
Space

region

Private boundary

Region
(PR)

N

Figure 2. Organization of the memory space

the 64-bit memory range whose address is stored in addr2”. Be-
ing Turing-complete, DISA is capable of implementing any com-
putable application logic.

DISA’s architecture does not explicitly contain registers. This
design provides a unified operand representation yet does not pre-
vent register-based optimization because the memory model allows
some addresses to be affiliated with registers. A DISA instruction
may use options to indicate specific operation semantics, such as
the :z and :c in the sum_runner example, and the operands can
refer to immediate values or memory content using direct, indirect
or displacement addressing mode.

3.2 Unified memory space

To facilitate the illusion of programming on a single computer,
DISA provides a large, flat, and unified memory space where all
runners in a DVM reside. The memory space of a DVM is divided
into two regions—the private region (PR) and the shared region
(SR). The starting address of the SR is the region boundary (RB)
which is just after the address of PR’s last byte. The memory layout
is shown in Figure 2.

A write in an individual runner’s PR does not affect the content
stored at the same address in the other runners’ PRs. In contrast,
the SR is shared among all the runners in the sense that a value
written by one runner can be visible to another runner in the same
DVM with DISA’s memory consistency model controlling when
values become visible. A runner can use the PR to store temporary
or buffered data because of its very small overhead, and use the
SR to store the main application data which may be shared among
runners. In our implementation on the x86-64 platform, we set
RB to 0x400000000 and an application can use a 46-bit memory
address space. Therefore, programs can potentially store around
64TB data in SR and each runner can store several gigabytes of
data in its PR, which is sufficient for most of the applications in
datacenters.

The consistency model of DISA plays a critical role on the pro-
grammability and the scalability. DISA provides a snapshot-based
consistency model that relaxes the read/write order on different
snapshots. In DISA, a snapshot is a set of memory ranges instanti-
ated with the memory state at a particular point in time. A memory
range is a sequence of consecutive bytes starting from a memory
address. After a snapshot is created for a runner, later updates to
the associated memory ranges by other runners do not affect the
state of the snapshot. Hence, when reading data from a snapshot, a
runner always receives the value the runner itself has written most
recently or the value stored at the time the snapshot is taken. The
consistency model of DISA permits concurrent accesses optimisti-
cally, and detects write conflicts automatically. With this consis-
tency model, it is possible to implement atomic writes of a group
of data, which are commonly used in transactional processing and
other reliable systems requiring ACID properties.

42

parent abort or commit failure

parent commit

without watched
ranges enabled schedule exit or abort
running

memory
change

created

parent commit
with watched
ranges enabled

Figure 3. State transition of the runner and watcher

To assist the runners in using the shared and snapshotted SR
in the unified memory space, components of the DVM cooperate
to manage the snapshots and facilitate the memory accesses by
runners. The snapshots are managed by the scheduler for runners
and serialized by the memory subsystem. The scheduler creates
a snapshot for a runner on its interested memory ranges before
scheduling it for execution. The snapshot is associated with the
runner throughout its lifetime and the snapshot can be extended
only by the scheduler when it is needed. At the end of the runner’s
execution, the scheduler commits the changes made by the runner
to the DVM memory. The commit operation is atomic and the
updates are made visible to all the snapshots created thereafter.

The RComps facilitate the memory subsystem to handle the run-
ners’ memory accesses. An individual runner’s PR is implemented
as the local memory ranges on the RComp where the runner re-
sides. The SR is shared among all the runners and distributed across
the RComps. The memory subsystem reuses the virtual memory
hardware to detect memory accesses in the SR and service remote
data following established practices [29, 32].

As locality is crucial for performance in large clusters [49], we
design a simple yet general mechanism to coordinate runners to
execute on RComps based on the memory range usage history to
improve locality for various workloads. The scheduler proactively
assigns a runner to the RComp that recently used the SR ranges
needed by the runner if such an RComp exists. In the mean time,
the users or programmers need not to know or make specific ar-
rangements for the physical memory allocation and distribution.

As updates by one runner only affect the content of the associ-
ated snapshot, most of the memory accesses are handled locally at
native speed. The order of read/write by different runners is relaxed
and concurrent accesses and updates are permitted in this memory
model. This makes the system easily scalable with both the num-
ber of runners and the data size. In the mean time, the memory
subsystem only serializes the committing of memory ranges when
runners exit. Hence, the DVM can efficiently manage a large num-
ber of snapshots for the runners in the system.

3.3 Tasking and scheduling

We design DVM’s parallelization mechanism so that it is easier to
develop not only “embarrassingly parallel” programs, but also more
sophisticated applications, and the programs can efficiently execute
in a datacenter environment. Our goal is to provide a scalable,
concurrent, and easy-to-program task execution mechanism with
automatic dependence resolution. To achieve the goal, we design
a many-runner parallelization mechanism for scalable and efficient
concurrent execution, a scheduler to manage the runners and the
many-runner execution, and watchers to express and resolve task
dependences.

3.3.1 Runner

Runners are the abstraction of the program flows in a DVM. A
runner is created by its parent runner and terminates after it exits
or aborts. Figure 3 summarizes the state transitions in a runner’s
life cycle. The parent runner creates a new runner by executing

RCB Address Stack

|16 bis 16 its |16 bis |16 s>
sb
ss
i

A

sb, +s5,-1

heap_
range_
count

watched_
range_
count

reserved

reserved

heap_range_beging

heap_range_lengthg

heap_ranges heap_range_begin;

heap_range_lengthy

watched_range_beging
watched_ranges: watched_range_lengthg

initial data

Stack base sb,

Figure 4. Runner 7’s initial stack and RCB

the newr instruction. A “created” runner moves to “schedulable”
state after the parent runner exits and commits successfully. The
runner moves to the “running” state after being scheduled and to
the “finished” state after it exits or aborts. The “watching” state
applies only to a class of special runners called “watchers”, which
are to be introduced in Section 3.3.4.

Each runner uses a range of memory as its stack range (stack for
short), changes to which are discarded after the runner exits, and
multiple ranges of memory as its heap ranges. Runners in a DVM
are started by the scheduler. Therefore, the scheduler needs to know
certain control information about the runner, such as the location of
code and the runner’s stack and heap ranges. DVM uses a Runner
Control Block (RCB) to store the control information needed by the
scheduler to start a runner. Figure 4 shows the content of a runner’s
RCB as well as the runner’s initial stack. The RCB contains the
stack base address sb and stack size ss. A 64-bit pointer, f4,
specifies the address of the first instruction from which the runner
starts to execute. The heap_ranges and heap_range_count fields
stores the locations and the number of the heap ranges, respectively.
The watched_ranges and watched_range_count fields are used
by the watcher mechanism which will be discussed later.

Every runner resides in one RComp. Providing system functions
related to the management and operations of runners, the RComp
reduces the overhead of dispatching and starting a runner. RComps
interact with other parts of the DVM system, and hide the com-
plexity of the system so that the runners can focus on expressing
the application logic on the abstraction provided by DISA. Because
RComps are reused, a large portion of the runner startup overhead,
such as loading modules and setting up memory mapping, is in-
curred only once in the lifetime of a DVM. To start a runner, the
RComp only needs to notify the memory subsystem to set up the
runner’s snapshot, and the supporting mechanisms, such as the net-
work connections, can be reused. Hence, RComps make it efficient
to start runners in a DVM. Section 5 quantitatively studies the over-
head of creating and starting runners.

3.3.2 Scheduling

In a complex program, myriads of runners may be created dy-
namically and exit the system after completing their computation.
RComps, on the other hand, represent a semi-persistent facility to
support runners’ execution. Hence, there can be more runners than
RComps in a DVM, and the scheduler assigns runners to RComps,
as well as manages and coordinates the runners throughout their
life cycles. Specifically, the scheduler is responsible for deciding
when runners should start execution, assigning runners to RComps,
preparing runners’ memory snapshots, handling runners’ requests
to create new runners, and managing the runners that the DVM does
not have resources (RComps) to execute currently. As the child run-
ners created by a parent runner are not schedulable until the parent

43

runner exits and commits successfully, the scheduler also maintains
the “premature” runners (the runners in the “created” state) in the
DVM. The scheduler also implements the DVM’s watcher mecha-
nism (to be discussed in Section 3.3.4).

The scheduler is a distributed service running on all constituent
hosts of DVM. Specifically, the scheduler of a DVM consists of
two parts: the scheduler master (the master) and the scheduler
agent. There is a single scheduler master in a DVM, and there are
many scheduler agents residing in RComps. The master and the
agents communicate with each other through the datacenter net-
work. The master makes high-level scheduling decisions, such as
dispatching runners for execution and assigning them to RComps,
and commands the agents to handle the remaining runner manage-
ment work, such as preparing and updating runners’ snapshots. In
the other direction, an RComp can send scheduling-related requests
to its associated agent and the agent may ask the master for coordi-
nation if it is needed.

The scheduler dispatches multiple runners from its pool of
schedulable runners according to the scheduling policy, which
takes locality along with other factors into consideration, to an
RComp when it is free (no runner is running in it), creating a mem-
ory snapshot for the runner and notifying the RComp to execute
the runner. A runner may create as many child runners as the entire
DVM (or datacenter) can handle. When a runner requests to create
new runners, the scheduler constructs RCBs for the child runners,
and extends the parent runner’s memory snapshot so that the parent
can access and construct the child runners’ stacks. After the parent
exits and commits successfully, the scheduler adds the child run-
ners to the runner and watcher pools, and the newly created runners
in the runner pool become schedulable.

Although there is only one scheduler master in a DVM, it
has not been found that the single master constrains the DVM’s
scalability. As aforementioned, the master is only responsible for
high-level decisions and occasional coordination and arbitration,
and is, consequently, very lightweight. Most of the work is handled
in parallel by the scheduler agents in the RComps. Hence, the
scheduler does not constitute bottleneck in the DVM in practice.
Several large-scale systems, such as MapReduce [20], GFS [23],
and Dryad [27], follow a similar single-master design pattern.

3.3.3 Many-runner parallel execution

The DVM should be able to accommodate a large number of run-
ners and execute them in parallel to exploit the aggregate com-
puting capacity of many physical hosts. This requires the paral-
lelization mechanism to provide scalable, concurrent and efficient
task execution and a flexible programming model to support many-
runner creation and execution.

DVM uses the shared-memory model to simplify the program
development and hides the underlying distributed system details
from programmers. All runners inside one DVM share a common
memory region (SR) as discussed in Section 3.2. While a runner
may write multiple memory ranges in the SR during its execution,
the runner may not want to apply all the changes made by it to the
global memory space—for example, some ranges may only pro-
vide input or temporary data which are not used by other runners.
DISA’s memory subsystem enables programmers to control the be-
haviors of memory ranges so that it can support common cases of
memory usage. A runner mainly obtains its input from its initial
state comprising its stack and heap ranges, and can also read data
from I/O channels during its execution. The runner’s initial stack
state is constructed by its parent runner, and its output is written
into its heap ranges and I/O channels if it is needed. We call this
memory usage scheme the STHO (Stack-In-Heap-Out) model.

Upon completion, a runner specifies whether it wants to commit
or abort its changes to the heap ranges. If it commits, the changes

to the heap ranges by the runner are applied to the global memory
space, given no conflicts with other runners’ memory updates ex-
ist. If it aborts, the changes are discarded. The changes to a runner’s
stack are always discarded upon completion of the runner. As a run-
ner operates on its own snapshot independently of other runners’,
a large number of runners in a DVM can execute in parallel opti-
mistically assuming there are no conflicts. In the case that conflicts
occur, the DVM system automatically detects conflicts, delays ex-
ecution, and aborts runners, if necessary, to ensure correct memory
semantics.

To support many-runner parallel execution on the ISA level, the
runner creation and dispatching mechanism must be lightweight
and highly efficient. We design an instruction-level runner creation
mechanism. To create a new runner and prepare it for execution, the
program only needs to specify the fi and the heap ranges for the
new runner, issue a “newr” instruction, and instantiate the stack.

We use an example to show how a runner creates a new runner
and how the DVM handles the runner creation. When a runner, R;,
creates a new runner, R;, I?; executes the instruction “newr” with
addresses of R;’s stack range, heap ranges and fi, as operands.
RComp(R;), the RComp in which R; runs, sends R;’s control
information specified by these operands to the scheduler. As R;
may write the input data into R;’s stack and a memory range can
be used by R; only after RC'omp(R;) has the range’s snapshot, the
scheduler creates a snapshot of R;’s stack and merges the snapshot
into R;’s current one. After the memory range for R;’s stack is
ready, R; writes the initial application data into I?;’s stack. The
scheduler constructs and records R;’s RCB along with the RCBs
of the other runners created by R;.

When R; exits and commits, the scheduler starts the newly
created runners by R;, including R;, according to the recorded
RCBs. Using R; as an example, we specify the runner start-up
procedure in Algorithm 1.

Algorithm 1 Start a new runner R;

1: RComp(R;) = the RComp chosen by the scheduler for R;

2: A = snapshot of R;’s stack range and heap ranges, created by the
scheduler according to RC B;

: The scheduler sends A and RC'B; to RComp(R;)

: The scheduler commands RC'omp(R;) to start R;

: RComp(Rj) sets R;’s local context according to RC B;

: R starts from fi to execute in RComp(R;)

(o T I OS]

3.3.4 Task dependency

Task dependency control is a key issue in concurrent program exe-
cution. Related to this, synchronization is often used to ensure the
correct order of the operations, avoid race conditions, and, with
execution order constrained, guarantee that the concurrent execu-
tion does not violate dependence relations. For example, X10 pro-
vides barriers through the finish statement and clock operations
to conduct synchronization and, consequently, control the execu-
tion order [15]. A MapReduce application’s map workers’ output
is the reduce workers’ input, which, in turn, implicitly requires de-
pendence be handled in this way. Dryad requires the programmer
or compiler to explicitly specify the dependency graph of the pro-
grams using a DAG (directed acyclic graph) [27].

As an important goal in the DVM design, the DISA architec-
ture should provide a task dependency representation and resolu-
tion mechanism with which task-level dependence can be naturally
expressed, concurrent tasks can proceed without using synchro-
nization mechanisms such as locks [11], and sophisticated compu-
tation logic can be processed effectively with dynamically sched-
uled parallelism. The aforementioned approaches have their lim-
itations and constraints: the synchronization mechanisms are not
natural or efficient to represent dependence [16, 45]; MapReduce

44

employs a restricted programming model and makes it difficult to
express sophisticated application logic [21, 41, 47]; DAG-based
frameworks incur non-trivial burden in programming, and auto-
matic DAG generation has only been implemented for certain high-
level languages [48]. Departing from existing solutions, we design
a watcher mechanism in the DISA architecture to provide a flex-
ible way of declaring dependence and enable the construction of
sophisticated application logic. A watcher is a runner that depends
on other runners and watchers: a watcher IV is not schedulable un-
til other runners or watchers change specific memory ranges that
are “watched” by WW. We call these ranges W’s “watched ranges”,
and we use the watched_range_count field in the RCB (refer to
Figure 4), which stores the number of watched ranges (0 for a reg-
ular runner), to distinguish a watcher from a regular runner. The
watcher-specific data structures impose almost no space overhead
for regular runners as the watched_ranges list, which stores the
watched ranges, is variable-size.

Suppose a runner, R, has created the watcher W. When R exits
and commits, W is enabled by the scheduler (transition to the
“watching” state in Figure 3). Different from a regular runner, W is
in the “watching” state, is not schedulable, and stays in the watcher
pool. When some other runners or watchers write W’s watched
ranges and commit the changes to the global memory space, the
memory subsystem notifies the scheduler, and the scheduler moves
W to the runner pool, making it schedulable.

With the watcher mechanism, the programs focus on and natu-
rally express the true dependence among tasks (runners) and data.
Therefore, programmers can easily construct programs for not only
embarrassingly parallel but also complex, iterative, or even interac-
tive computation. The DVM system automatically resolves the de-
pendence and efficiently executes the program with parallelization.

3.4 1/0O, signals and system services

We design the I/O mechanism to enable runners to read and write
data on I/O channels. For simplicity and flexibility, DISA adopts
the memory mapped I/O for DVM to operate on I/O channels.
This design does not require additional instructions—all DISA’s
memory access instructions can also be used for I/O. We can use
this mechanism to support many kinds and a large number of
I/0 channels which may be distributed in many RComps. In the
evaluation discussed in Section 5, we use 1/O channels to input the
dataset to the k-means program.

Signals are notifications of the state changes in a DVM. We de-
sign the signal mechanism to enable runners to catch the informa-
tion of its interested events in the system. We design the signal
mechanism above the watcher mechanism and the system services
(to be discussed below). The signals are represented as changes to
specific memory ranges, and runners (watchers) can “watch” these
memory ranges to get notified.

Several distributed system services collaborate with the sched-
uler and RComps to support system functions. For example, the I/O
services on RComps manage I/O channels, and the “system state”
service broadcasts “system state changing” signals. On top of the
compact and efficient core parts of the DVM as described, it is easy
to implement various system services to provide a rich set of func-
tions.

4. Implementation and programming notes

We have implemented DVM and DISA on x86-64 hosts. The im-
plementation of the DISA and DVM comprises around 11,510 lines
of C and assembly code. On each host, the DVM runs in conjunc-
tion with a local Linux OS as the base system, which manages local
resources including CPUs and local file systems. The distribution
of the code in each part of DVM is shown in Table 2.

Table 2. Implementation of DVM

Sub-system LOC Size of binary code (KiB)
Scheduler 2861 59
Memory 3220 72
RComp 715 40
Translator 4714 73

Figure 5. The CCMR research testbed

4.1 Implementation and portability

We have implemented and run DVM on three platforms—a re-
search testbed, an industrial testbed, and the Amazon Elastic Com-
pute Cloud (EC2). Although the three platforms have quite differ-
ent underlying hardware configurations and slightly different Linux
kernels, it proves to be straightforward to port DISA to all these
platforms by adding logic to match specific kernel data structures.
Application programs do not need to be changed at all on three
platforms. Our experience shows that DISA and DVM are highly
portable.

We emulate DISA instructions on x86-64 machines in our cur-
rent implementation using two mechanisms. One is to translate the
DISA assembly to x86-64 assembly and compile it to object code.
The other is to conduct binary translation to convert x86-64 code
on the fly during the execution of a DISA program. Which emula-
tion mode to use in a DVM can be configured at compilation time.
In our evaluation discussed in Section 5, we manually encode the
microbenchmark programs to run on a DVM. As one direction of
future work, we will build compilers for the DISA architecture.

Our main development and evaluation platform is the CCMR
research testbed which we can fully control. Shown in Figure 5, the
CCMR testbed is constructed for cloud computing research, and
is composed of 50 servers with Intel Quad-Core Xeon processors.
The testbed has two additional servers providing GPU acceleration,
but they are not used in our evaluation.

To verify the performance results in industrial environments, we
repeat some experiments on the industrial cluster. The industrial
testbed comprises 32 servers, each of which has one Intel Core 2
Duo processor.

To test DVM’s scalability in a larger scale, we conduct part
of the experiments on Amazon EC2 virtual machines. The results
on EC2 also show the portability of DISA in a virtualized and
heterogeneous environment.

4.2 How to program

We extend the sum_runner example (introduced in Section 2.2)
to illustrate how to write a parallel program with data dependence
in DISA. The example uses 10,240 runners to compute sums of
20,480 integers in parallel. The execution graph is shown in Fig-

45

®®
O,
/
O

L/

P

Figure 6. The execution graph of the parallel sum

ure 6. Each vertex in the graph represents one runner that sums two
integers and stores the result in the global memory space.

4.2.1 Parallelism

The following code starts 10,240 sum_runner runners to compute
10,240 partial sums. The calculation of the final sum requires
additional rounds of sum operations following data dependence,
which will be introduced later.

main_runner:

create 10,240 sum_rumner runners:

store the addresses of ranges for stacks and heaps

in 0x100001008 and 0x100001010 (omitted)

mov:z $0:q, 0x100001000:q #1=0

j_do:

suppose the addresses of the runner’s control information

are in 0x1£0000100, 0x1£0000108, 0x1£f0000110 and 0x1£f0000118

mov:z 0x100001008:q, (0x1£0000100):q # set stack base
mov:z $0x1000:q, 8(0x1£0000100):q # set stack size
mov:z $1:q, (0x1£0000108):q # set heap range count
mov:z 0x100001010:q, 8(0x1£0000108):q # heap range

mov:z $0x1000:q, 16(0x1£0000108):q # heap range’s length
mov:z $0:q, (0x1£0000110):q # watched range count
mov:z $sum_runner:q, (0x1£0000118):q # set code

create the new runner:

newr 0x1f0000100, 0x1£f0000108, 0x1f0000110, 0x1f0000118

initialize the stack (omitted here)

add $0x1000:ug, 0x100001008, 0x100001008 # update stack base
add $0x1000:ug, 0x100001010, 0x100001010 # update heap range
add $1:uq, 0x100001000, 0x100001000 # i++

br:1 0x100001000:uq, $10240, j_do # while i < 10240
exit:c # exit and commit

In this example, main_runner creates 10,240 sum_runner
runners by executing the newr instruction with the new runners’
control information as operands. The new runners will be schedu-
lable after main_runner exits and commits (the exit:c instruc-
tion).

From this example, we can see that programs can create new
execution flows efficiently at the DISA instruction level, and pro-
grammers can easily design and effectively express distributed and
parallel programs with the DISA instruction set.

4.2.2 Data dependence

Each of the runners represented as white vertices in Figure 6 de-
pends on the output of two other runners as indicated by the edges
in the graph. We show in the following code how to express this
data dependence using the “watcher” mechanism.

sum_watcher:

read the heap addresses of the depended runners or watchers and
the address to store the result from the stack, and stores
them in 0x100001000, 0x100001008, and 0x100001010 (omitted)
check whether the depended data is ready

br:e $0:uq, 8(0x100001000), create_self

br:e $0:uq, 8(0x100001008), create_self

sum the two integers as the sum_runner

add (0x100001000) :uq, (0x100001008), (0x100001010)

mov:z $1:q, 8(0x100001010):q # exit code

exit:c

create_self:

create sum.watcher with the same control information
as itself (omitted)
exit:c

main_runner:

creates 10,240 sum.runner as in the previous part (omitted)

creates 10,239 sum.watcher watchers:

mov:z $0:q, 0x100001000:q #1=0

j_do2:

suppose the addresses of the watcher’s control information are
in 0x1e0000100, 0x1e0000108, 0x1e0000110 and 0x1e0000118,

and the watched ranges are calculated according to i and

stored in the memory range starting from 0x100001018

set the stack range, the heap ranges, and the code (omitted)
mov:z 0x100001018:q, 8(0x1e0000110):q # set watched range 1
mov:z 0x100001020:q, 16(0x1e0000110):q # set range 1’s length
mov:z 0x100001028:q, 24(0x1e0000110):q # set watched range 2
mov:z 0x100001030:q, 32(0x1e0000110):q # set range 2’s length
create the new watcher:

newr 0x1e0000100, 0x1e0000108, 0x1e0000110, 0x1e0000118

initialize the stack (omitted)

update stack base and heap ranges (omitted)

add $1:uq, 0x100001000, 0x100001000 # i++

br:1 0x100001000:uq, $10239, j_do2 # while i < 10239
exit:c # exit and commit

The main_runner creates 10,239 sum_watcher watchers to-
gether with the 10,240 sum_runner runners. The sum_watcher is
activated after the data it depends on are changed by other runners
or watchers. As the sum_runner (or the sum_watcher) writes “1”
as the exit code which is also used as the “marker” to indicate that
it has committed its heap ranges, the sum_watcher can check the
exit codes to determine whether both operands for the sum opera-
tion are ready. The watcher creates itself again to continue “watch-
ing” the data it depends if either of the two depended runners or
watchers has not exited and committed.

This example shows that programs can express task dependence
easily by watchers on the ISA level without using synchronization
mechanisms. The dependences are automatically resolved by the
scheduler and watcher-related mechanisms in the DVM.

5. Evaluation

‘We measure the virtualization and tasking overhead of DVM, com-
pare the performance of DVM with Hadoop and X10, and inspect
the scalability of the DVM. We choose Hadoop and X10 for com-
parison because they are representatives of two mainstream ap-
proaches to datacenter computing and their implementations are
relatively mature and optimized. Hadoop represents a class of
MapReduce-style programming frameworks such as Phoenix [41],
Mars [25], CGL-MapReduce [21], and MapReduce online [19],
and has been used extensively by many organizations [5]. X10 rep-
resents a class of language-level solutions, including Chapel [13]
and Fortress [4], targeting “non-uniform cluster computing” envi-
ronments [15].

For each technical solution in comparison, we apply the highest
performance setting among the standard configurations. For exam-
ple, X10 programs are pre-compiled to native executable programs
to give the best performance, and we write the x86-64-based mi-
crobenchmark programs in comparison in the assembly language
to optimize the baseline to our best. We use measurement programs
and two computational workloads to evaluate the DVM on the three
platforms presented in Section 4.1, examine the execution time
and speedup, and compare DVM’s results with other technologies’.
Note that the platforms have different performance characteristics.
To make the comparison fair, we indicate the platform on which
the evaluation is conducted, use the same set of compute nodes and
the same network topology and configuration to run comparative
experiments on each platform, and repeat the experiments to make
sure results are consistent.

46

Table 3. Microbenchmark results

Benchmark Solution Time (second)
Native 7.13
Arithmetic and logic DVM 7.14
operation Xen 7.14
VMware 7.35
Native 110.60
Memory operation DVM 126.41
Xen 112.43
VMware 128.37

Table 4. Time for creating and executing a runner

Operation Operation step Time (ms)
Create snapshot 0.4
Create the runner 0.4
Create a runner Update RComp 0.5
Overall 1.3
Create snapshot 0.4
Update RComp (NULL) 0.4
Execute a runner Update RComp 0.5
(empty runner) Invoke the runner 0.2
Commit snapshot 0.9
Overall 24

The evaluation results show that DVM is one order of magni-
tude faster than the other technologies on workloads with moder-
ate sophistication, runs reliable across different environments, and
scales easily to hundreds of computer nodes.

51

We run microbenchmarks to measure the virtualization overhead
of DVM and compare the results with traditional virtual machine
monitors. We also measure the overhead of creating and executing
runners in a DVM.

Microbenchmarks

5.1.1 Virtualization overhead

‘We measure the arithmetic and logic operation performance to as-
sess the overhead of CPU virtualization. A microbenchmark pro-
gram is created to execute totally 23* add operations, and imple-
mented in x86-64 assembly and DISA. We execute the microbench-
mark programs in Xen, VMware Player, native Linux, and a DVM
on the same physical host. To achieve the best performance, the
x86-64 assembly implementation heavily uses registers. The DISA
implementation is assembled into DISA binary code, and the bi-
nary translator of DVM translates DISA instructions into x86-64
instructions during the execution.

Memory is another important subsystem in the DVM, and we
shall verify that the large-scale, distributed and shared memory sys-
tem does not incur dramatic overhead on one machine. We measure
the memory operation performance with another microbenchmark
program that writes 229 64-bit integers (4 GB in total) to the mem-
ory for 256 times and then read them for 256 times. We implement
the microbenchmark in x86-64 assembly and DISA and execute the
microbenchmark on the same physical host.

Table 3 shows the results of the microbenchmarks. From the re-
sult, we can see that the virtualization overhead for arithmetic, logic
and memory operation of DVM is 0.1-15% over native execution
on the physical host, which is comparable to traditional VMMSs. In
particular, DVM exhibits even higher performance than VMware
on one physical host. For the memory microbenchmark, the time
on DVM includes 7.47 seconds for creating and committing the
memory snapshot for the runner.

5.1.2 Runner overhead

Task creation, scheduling, and termination are important and fre-
quent operations in a task execution engine. To examine DVM’s
performance in this aspect, we measure the overhead of creating
and executing a runner. We use one runner to create 1000 new
empty runners and execute these runners. To measure the overhead
accurately, we force the tasking operation to be serial by conduct-
ing the experiment using one RComp on one working node so that
we can obtain the average execution time of each operation.

Table 4 shows the overhead of creating and executing a runner
and the time used in each step—create snapshot for the runner, ini-
tialize the RComp’s memory (update RComp with a NULL snap-
shot), prepare the memory (update RComp), invoke the runner and
commit the snapshot after the runner exits. From the results, we can
see that the overhead of creating and executing a runner in a DVM
is only several milliseconds. The small overhead enables DVM to
handle thousands of runners efficiently, and gives programmers the
flexibility to use a large number of runners as they want.

5.2 Workloads

To evaluate DVM’s performance of parallel execution, we design
and run the prime-checker which uses 1000 runners to check the
primality of 1,000,000 numbers. To show DVM’s performance on
widely used algorithms that are less easy to parallel, we implement
the k-means clustering algorithm [35] which iteratively clusters a
large number of 4-dimensional data points into 1000 groups and
reflects known problem configurations in related work [28, 31, 50].

Prime-checker We use the prime-checker to evaluate DVM’s
scalability and portability. A runner (the main runner) creates 1000
runners and each runner checks 1000 large numbers. To show the
ease of programming with shared memory, we design the program
in the way that all the runners use the same global parameters by
sharing a memory range so that each runner can calculate its set of
numbers to be checked. As the prime-checker is highly paralleliz-
able, we use this arithmetic application to evaluate the scalability
of the DVM—whether DVM can achieve near-linear speedup as
we add more working nodes.

K-means clustering K-means clustering is an algorithm used
for partitioning a data set into k clusters iteratively [35], which is
commonly used for data mining. Various software and libraries im-
plement the k-means algorithm [6, 36, 44]. Researchers also use
k-means algorithm to evaluate MapReduce for machine learning
and data intensive analytics [18, 21]. The k-means process starts
with k initial clusters and iteratively refines the clusters by reassign-
ing points to the closest cluster and updating the clusters’ means.
We implement the k-means algorithm mainly following the widely
used ones from Mahout [6] and X10’s distribution. To achieve rea-
sonably optimized performance results, we optimize the implemen-
tations for all three technologies, Hadoop, X10, and DVM, with the
methods used in related work [18, 51]. Our implementations are
downloadable from http://baijia.info/dvm/kmeans.tar. In
addition to the same implementation and optimization method, we
use the same data set and identical configurations for the three tech-
nologies, including the number of iterations, the initial cluster cen-
troids and the value of k.

5.3 Performance comparison

‘We run the performance evaluation programs with the same dataset
on different numbers of working nodes on the research testbed to
compare the performance and scalability of the three technologies.
To verify the results, we run all the tests on the industrial testbed
and compare the results with those on the research testbed. We also
increase the size of the input data and test with a fixed number of

47

Table 5. Execution time for prime-checker

Number Hadoop DVM
of nodes (second) (second)
1 16661 15795
2 8352 7885
4 4169 3950
8 2090 1975
16 1112 986
140000
X10 o—
Hadoop ===
120000 DVM —— et
'é 100000
E-i 80000
g
§ 60000
% 40000
20000
o — —
Research testbed Industrial testbed
Figure 7. Execution time for k-means on 1 node
9000
X10 m—
so00 -AERER M
7000
§ 6000
f 5000
E
_é 4000
g 3000
“ 2000
1000
o — —

Research testbed Industrial testbed

Figure 8. Execution time for k-means on 16 node

working nodes on the research testbed to evaluate DVM’s scalabil-
ity with data size.

Table 5 shows the time of prime-checker on Hadoop and DVM.
We conduct the test on the research testbed and scale the num-
ber of working nodes to 16 physical hosts. The results show that
both Hadoop and DVM scale linearly as prime-check is easy to
parallelize. For simple ALU-intensive workloads, both DVM and
Hadoop are efficient, but DVM provides slightly higher perfor-
mance in spite of DVM’s advanced instruction set features and
memory model.

Figure 7 presents the execution time of k-means on Hadoop,
X10 and DVM with one working node on the research testbed
and industrial testbed. The execution time on Hadoop and X10 is
11 times more than that on DVM in both research and industrial
environments. As shown in this evaluation, DVM quickly exhibits
superiority in efficiency as the complexity of application grows.
Figure 8 shows the results on 16 working nodes and we can see
that DVM is at least 13 times faster than Hadoop, an indication of
good scalability for DVM.

Figure 7 and Figure 8 present that DVM exhibits tremendous
speed gains over Hadoop and X10, although Table 5 shows that
DVM only provides slightly better performance than Hadoop with
simple ALU-intensive workloads. This observation, in fact, illus-
trates the advantages of the DVM technology. When the compu-
tation is composed of one or two stages of easily parallelizable
processing, the MapReduce/Hadoop frameworks can already ac-
complish algorithmically optimal performance. The DVM can still

250

200

150

Speedup

100

50

s ‘
2 4 6 8 o 1 a2 '
Number of nodes

Figure 9. Speedups of k-means as the number of working nodes
grows

provide slightly higher performance due to its efficient instruction-
level abstraction. Moreover, the DVM quickly outperforms existing
technologies when the computation becomes more complex—i.e.,
containing iterations, more dependence, or non-trivial logic flows,
which are common cases in programs. The system design of DVM
aims to provide strong support for general programs, and the speed
gains of DVM shown in Figure 7 and Figure 8 reflect DISA’s gen-
erality, efficiency and scalability.

Figure 7 and Figure 8 also show that the Hadoop program on the
industrial testbed is slower than on the research testbed. Hadoop
transfers data through HDFS [20], the underlying data persistence
layer which stores data in working nodes’ hard drives, and the
working nodes in the research testbed are equipped with higher-end
hard drives than the industrial testbed. We believe that the disk I/O
contributes to the difference of the program execution time between
the research testbed and the industrial testbed. In a cluster with
high-speed network (such as 10Gbps Ethernet), which we believe
will become more popular in datacenters in the future, the disk
I/0O speed has certainly an impact on the system performance. On
the other hand, DVM uses shared memory for data communication
which does not rely on hard drives. From the results, we can see
that the performance data of DVM in both environments are close
to each other.

It may appear that the DVM’s memory-based data processing
is the main reason for its superiority in performance. This is, in
fact, an over-simplified view of the technical design space. X10
also handles program data through memory with PGAS (Parti-
tioned Global Address Space) [15]. As shown in Figure 7 and Fig-
ure 8, however, the DVM is one order of magnitude faster than both
Hadoop and X10. In fact, disk I/O does not necessarily outweight
other factors, such as network bandwidth and CPU capacity, in a
datacenter computing environment. In our evaluation, we have im-
plemented the same algorithm in all the three technologies and ap-
plied salient optimizations for each of them—e.g., compiling X10
programs to native x86-64 instructions—to ensure the workloads
are comparable with the three implementations. It is the holistic
design and the simple yet effective mechanisms in the DVM that
lead to the significant speedup over existing technologies, and it is
the ISA-level abstraction that enables such a design and the mech-
anisms. As the result, DVM performs at least as well as other tech-
nologies on all workloads, and delivers much better performance
than others for complex programs.

Figure 9 shows the speedups for three technologies on the re-
search testbed (“/R” in the figure) and industrial testbed (“/I” in
the figure) as we scale the number of working nodes. All speedups
are calculated with respect to the X10 performance on one working
node for each workload.

The speedup of the k-means computation on DVM is near-
linear in the number of compute nodes used, which highlights the

48

10000 55
Execution time
Throughput —+—

1000

Execution time (second)
Throughput (1000 points per second)

128
Size of the dataset (x100,000 points)

256 512 1024 2048

Figure 10. Execution time and throughput of k-means as the size
of dataset grows

100000

1000
Time ——
Speedup —+—

10000 £

1000 £

Execution time (second)
Speedup

100 ¢

1 4 16 64
Number of nodes

256

Figure 11. Speedup and execution time of prime-checker as the
number of working nodes grows

good scalability of the design and implementation of DVM. We
can also observe that the overhead of DVM is small, taking into
consideration the near-linear speedup and the fact that the execution
time on DVM in the 16-node experiment is very short compared
to the time on Hadoop or X10. The DISA program sequentially
reads the input from I/O in our current implementation, and the I/O
time is also included in the overall execution time. The k-means
computation on DVM should achieve a larger speedup if DVM
implemented the parallel I/O which is one direction of future work.
Figure 7, Figure 8, and Figure 9 also show that the execution
time and speedups are consistent on the industrial testbed and the
research testbed, which verifies the applicability of the DVM tech-
nology in industrial environments and reflects DVM’s portability.

5.4 Scalability

We run k-means on DVM with 50 working nodes on the research
testbed to evaluate DVM’s scalability with the data size. Figure 10
presents the execution time and throughput. We scale the dataset
from 12,800,000 points to 204,800,000 points (16 times). The
throughput is calculated by dividing the number of points by the
execution time. From the result, we can see that, on the same num-
ber of working nodes, the execution time grows slower than linear
growth with the data size while the throughput increases. Hence,
DVM scales well with the data size.

To evaluate DVM’s scalability and also test DVM’s perfor-
mance in a public cloud, we test the prime-checker on a DVM run-
ning on Amazon EC2 with up to 256 virtual machine instances.
Figure 11 shows the execution time and speedup with respect to
the performance on one instance. The results show that the DVM
scales very well to 256 working nodes—the speedup is near-linear
as we increase the number of instances. Our ability to perform tests
with larger-scale and more sophisticated workloads is limited by
the concurrent instance cap stipulated by EC2. In our future work,

we will communicate with Amazon to explore opportunities of
larger-scale tests. In the mean time, the current result on 256 in-
stances already shows that, although prime-checker is a relatively
easy-to-parallelize program, the DISA architecture and the DVM
design easily scale to hundreds of compute nodes without showing
signs of slowdown or obvious system bottlenecks. The experiment
on EC2 also proves the good portability of DVM in a virtualized
environment, and that the DVM can be used independently of or in
combination with traditional virtual machine monitors.

6. Related work

Many systems, programming frameworks, and languages are pro-
posed and designed to exploit the computing power of constella-
tions of compute servers inside today’s gigantic datacenters and
help the programmers design parallel programs easily and effi-
ciently. Dean et al. have created the MapReduce programming
model to process and generate large data sets inside Google’s data-
center environment [20]. MapReduce exploits a restricted program-
ming model so that the execution engine can automatically run
the programs in parallel and provide fault-tolerance. Dryad takes a
more general approach by allowing an application to specify an ar-
bitrary “communication DAG (directed acyclic graph)” [27]. While
these frameworks are successful in large data processing, the re-
stricted programming model is not general enough to cover many
important application domains and makes it difficult to design so-
phisticated and time-sensitive applications [21, 34, 41, 47]. Differ-
ent from the previous solutions, DVM allows programmers to eas-
ily design general-purpose applications running on a large number
of compute nodes by providing a more flexible yet highly scalable
programming model.

Although programming frameworks provide simple program-
ming models and interfaces for designing and developing large
distributed applications, a new language may help programmers
write clearer, more compact and more expressive programs. High-
level languages, such as Sawzall and DryadLINQ, which are im-
plemented on top of programming frameworks (MapReduce and
Dryad), make the data-processing programs more easier to de-
sign [40, 48]. However, these languages also suffer from the lim-
itation of the underlying application frameworks although they
allow programmers to design parallel programs using a higher-
level abstraction. Charles et al. design X10 to write parallel pro-
grams in non-uniform cluster computing system, taking both per-
formance and productivity as its goals [15]. The language-level
approach gives the programmers more precise control of the se-
mantics of parallelization and synchronization. DVM provides a
lower level abstraction by introducing a new ISA—DISA. On top
of DISA, we may implement various programming languages eas-
ily using DVM’s the parallelization and concurrency control mech-
anism along with the memory model.

Different from the frameworks and languages that make the
data communication transparent to programmers, message passing-
based technologies [22] require that the programmer handle the
communication explicitly [33]. This can simplify the system de-
sign and improve scalability, but often imposes extra burden on
programmers. In contrast, the distributed shared memory (DSM)
keeps the data transportation among computers transparent to pro-
grammers [37]. The DSM systems, such as Ivy [32] and Tread-
mark [29], combine the advantages of “shared-memory systems”
and “distributed-memory systems” to provide a simple program-
ming model by hiding the communication mechanisms [37], but
incur a cost in maintaining memory coherence across multiple com-
puters. In order to reduce overhead and enhance scalability, DVM
provides snapshotted memory, and the memory consistency model
of DISA permits concurrent accesses optimistically. In contrast to
the traditional ways of providing DSM in middleware which pro-

49

vide a limited illusion of shared memory, YNUMA uses virtualiza-
tion technology to build shared-memory multiprocess (SMM) sys-
tem and provides a single system image (SSI) on top of worksta-
tions connected through an Ethernet network that provides “sender-
oblivious total-order broadcast” [14]. This also differs from widely
used virtualization systems, such as Xen and VMware on the x86
ISA, which divide the resources of a single physical host into mul-
tiple virtual machines [8, 46]. Both yYNUMA and the emerging “in-
verse virtualization” [26] aim to merge a number of compute nodes
to be one larger machine. Different from vVNUMA, which is de-
signed to be used on a small cluster [14], DVM virtualizes the
servers at the ISA level and allows programs to scale up to thou-
sands of logic flows across a large number of nodes.

7. Conclusions and future work

Cloud computing is an emerging and important computing paradigm
backed by datacenters. However, developing applications running
in datacenters is challenging. We design and implemented DVM as
an approach to building datacenter-size virtual machines. Giving
programmers an illusion of a “big machine”, we design the DISA
as the programming interface and abstraction of DVM. We imple-
ment and evaluate DVM on research, industrial and public clusters,
and show that DVM is one order of magnitude faster than Hadoop
and X10 for moderately complex applications, and can scale to
hundreds of computers.

Beyond the current implementation of DVM, we see a number
of interesting future research directions and several of them are
as follows. First, we believe that the DISA architecture can scale
to larger-scale clusters, and will actively explore opportunities for
evaluations of DVM on 1000 or more compute nodes. Second, we
shall certainly not require all the programmers write application
in DISA. A compiler that “understands” DISA well to generate
efficient code is needed on DVM. Third, we may scale a DVM
to run across datacenters, so that DVM can use more computing
resources and recover from disasters that may possibly render a
datacenter inoperable.

8. Acknowledgments

This work was supported in part by the Huawei Technologies
research grant HUAW17-15G00510/11PN and HKUST research
grants REC09/10.EG06 and DAG11EG04G. We thank Yanling
Zheng, Mengmeng Cheng, Chengqi Song and Yanqun Zhang for
their help in various aspects of this project, and the Amazon AWS
research grant for the support in the EC2 based evaluation. Finally,
we are thankful to our shepherd, Ada Gavrilovska, and the review-
ers for their reviewing effort and valuable feedback.

References

[1] Amazon Elastic Compute Cloud — EC2. http: //aws. amazon.
com/ ec2/. [last access: 11/2,2011].

[2] Windows Azure. http: //www. microsoft. com/
windowsazure/. [last access: 11/2,2011].

[3] Rackspace.
2011].

[4] E. Allen, D. Chase, J. Hallett, V. Luchangco, J. Maessen, S. Ryu,
G. Steele Jr, S. Tobin-Hochstadt, J. Dias, C. Eastlund, et al. The
Fortress language specification. https://labs. oracle. com/
projects/plrg/ fortress. pdf, 2008. [last access: 11/2, 2011].

[5] Apache Hadoop. Hadoop Users List. http: //wiki. apache. org/
hadoop/PoweredBy. [last access: 11/2, 2011].

[6] Apache Mahout. Mahout machine learning libraries.
mahout. apache. org/. [last access: 11/2, 2011].

[7] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwin-
ski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. Above

http: //www. rackspace. com/. [last access: 11/2,

http: //

the clouds: A Berkeley view of cloud computing. UC Berkeley Tech-
nical Report UCB/EECS-2009-28, February 2009.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of virtu-
alization. In Proceedings of the 19th ACM symposium on Operating
Systems Principles, pages 164-177, 2003.

L. Barroso and U. Holzle. The datacenter as a computer: An introduc-
tion to the design of warehouse-scale machines. Synthesis Lectures on
Computer Architecture, 4(1):1-108, 2009.

[10] L. Barroso, J. Dean, and U. Hoelzle. Web search for a planet: The
Google cluster architecture. IEEE Micro, 23(2):22-28, 2003.

[11] K. Birman, G. Chockler, and R. van Renesse. Toward a cloud comput-
ing research agenda. SIGACT News, 40(2):68-80, 2009.

[8

[t}

[9]

[12] R. Buyya, T. Cortes, and H. Jin. Single system image. Intl. Journal of

High Performance Computing Applications, 15(2):124, 2001.

[13] B. Chamberlain, D. Callahan, and H. Zima. Parallel programmability
and the Chapel language. International Journal of High Performance
Computing Applications, 21(3):291, 2007.

[14] M. Chapman and G. Heiser. vNUMA: A virtual shared-memory
multiprocessor. In Proceedings of the 2009 conference on USENIX
Annual technical conference, 2009.

P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. Von Praun, and V. Sarkar. X10: an object-oriented
approach to non-uniform cluster computing. In ACM SIGPLAN No-
tices, volume 40, pages 519-538, 2005.

D.-K. Chen, H.-M. Su, and P.-C. Yew. The impact of synchronization
and granularity on parallel systems. In Proceedings of the 17th annual
intl. symposium on Computer Architecture, pages 239-248, 1990.

[15]

[16]

[17] Y. Chen, D. Pavlov, and J. F. Canny. Large-scale behavioral targeting.
In Proc. of the 15th ACM SIGKDD intl conf. on Knowledge discovery

and data mining, pages 209-218, 2009.

[18] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, A. Y. Ng, and
K. Olukotun. Map-Reduce for machine learning on multicore. In
Proc. of NIPS’07, pages 281-288, 2007.

[19] T. Condie, N. Conway, P. Alvaro, J. Hellerstein, K. Elmeleegy, and
R. Sears. MapReduce online. In Proceedings of the 7th USENIX conf.
on networked systems design and implementation, pages 21-21, 2010.

[20] J. Dean and S. Ghemawat. MapReduce: simplified data processing
on large clusters. In the 6th Conference on Symposium on Operating
Systems Design & Implementation, volume 6, pages 137-150, 2004.

[21] J. Ekanayake, S. Pallickara, and G. Fox. MapReduce for data inten-
sive scientific analysis. In Fourth IEEE International Conference on
eScience, pages 277-284, 2008.

[22] M. P. I. Forum. MPI: A message-passing interface standard. http:
// www. mpi-forum. org/ docs/mpi-2. 2/mpi22-report. pdf,
2009. [last access: 11/2, 2011].

[23] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file system.
In Proc. of the 9th ACM Symposium on Operating Systems Principles
(SOSP’03), pages 29-43, 2003.

[24] B. Hayes. Cloud computing. Communications of the ACM, 51(7):
9-11, 2008.

[25] B. He, W. Fang, Q. Luo, N. Govindaraju, and T. Wang. Mars: a

MapReduce framework on graphics processors. In Proceedings of the

17th international conference on parallel architectures and compila-

tion techniques, pages 260-269, 2008.

B. Hedlund.

plications.

[26] Inverse virtualization for internet scale ap-

http: //bradhedlund. com/2011/03/ 16/

inverse-virtualization-for-internet-scale-applications/.

[last access: 11/2, 2011].

M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: dis-
tributed data-parallel programs from sequential building blocks. In
EuroSys '07: Proceedings of the 2nd ACM SIGOPS/EuroSys Euro-
pean Conference on Computer Systems 2007, pages 59-72, 2007.

[27]

[28] H. Jégou, M. Douze, and C. Schmid. Improving bag-of-features for
large scale image search. International Journal of Computer Vision,

87(3):316-336, 2010.

50

[29] P. Keleher, A. Cox, S. Dwarkadas, and W. Treadmarks. Distributed
shared memory on standard workstations and operating systems. In
Proc. 1994 Winter Usenix Conference, pages 115-131, 1994.

[30] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. KVM: the
linux virtual machine monitor. In Proceedings of the Linux Sympo-
sium, volume 1, pages 225-230, 2007.

[31] D. Lee, S. Baek, and K. Sung. Modified k-means algorithm for vector
quantizer design. Signal Processing Letters, IEEE, 4(1):2—4, 1997.

[32] K. Li and P. Hudak. Memory coherence in shared virtual memory
systems. ACM Trans. Comput. Syst., 7(4):321-359, 1989.

[33] H. Lu, S. Dwarkadas, A. Cox, and W. Zwaenepoel. Message passing
versus distributed shared memory on networks of workstations. In
Proc. of the IEEE/ACM Supercomputing 95 Conf., page 37, 1995.

[34] Z. Ma and L. Gu. The limitation of MapReduce: A probing case
and a lightweight solution. In Proc. of the Ist Intl. Conf. on Cloud
Computing, GRIDs, and Virtualization, pages 68-73, 2010.

[35] J. MacQueen. Some methods for classification and analysis of multi-
variate observations. In Proceedings of the fifth Berkeley symposium
on mathematical statistics and probability, volume 1, page 14, 1967.

[36] MathWorks. Inc. Matlab. http: //www. mathworks. com/
products/matladb/. [last access: 11/2, 2011].

[37] B. Nitzberg and V. Lo. Distributed shared memory: A survey of issues
and algorithms. Computer, 24(8):52-60, 1991.

[38] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,
L. Youseff, and D. Zagorodnov. The Eucalyptus open-source cloud-
computing system. In Proc. of the 9th IEEE/ACM Intl. Symposium on
Cluster Computing and the Grid, pages 124—131, 2009.

[39] P.J. Nurnberg, U. K. Wiil, and D. L. Hicks. A grand unified theory for
structural computing. Metainformatics, 3002:1-16, 2004.

[40] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. Interpreting the
data: Parallel analysis with Sawzall. Sci. Program., 13(4):277-298,
2005.

[41] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and
C. Kozyrakis. Evaluating MapReduce for multi-core and multipro-
cessor systems. In Proc. of the 2007 IEEE 13th Intl Symposium on
High Performance Computer Architecture, pages 13-24, 2007.

[42] Salesforce.com. [last access:

11/2,2011].

[43] M. C. Schatz. CloudBurst: highly sensitive read mapping with
MapReduce. Bioinformatics, 25:1363-1369, 2009.

[44] The R Project. The R Language. http: //www. r-project. org/.
[last access: 11/2, 2011].

[45] C. Tseng. Compiler optimizations for eliminating barrier synchroniza-
tion. In ACM SIGPLAN Notices, volume 30, pages 144—155, 1995.

[46] C. A. Waldspurger. Memory resource management in VMware ESX
server. SIGOPS Oper. Syst. Rev., 36(SI):181-194, 2002.

[47] H.-C. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker. Map-Reduce-
Merge: simplified relational data processing on large clusters. In
SIGMOD ’07: Proceedings of the 2007 ACM SIGMOD international
conference on Management of data, pages 1029-1040, 2007.

Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K. Gunda, and
J. Currey. DryadLINQ: A system for general-purpose distributed data-
parallel computing using a high-level language. In the 8th Conference
on Symposium on Operating Systems Design & Implementation, pages
1-14, 2008.

M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica. Delay scheduling: a simple technique for achieving locality
and fairness in cluster scheduling. In EuroSys ’10: Proceedings of the
5th European conference on computer systems, pages 265-278, 2010.

http: //www. salesforce. com.

[48]

[49]

[50] R. Zhang and A. Rudnicky. A large scale clustering scheme for kernel
k-means. Pattern Recognition, 4:40289, 2002.
[5S1] W. Zhao, H. Ma, and Q. He. Parallel k-means clustering based on

mapreduce. In roceedings of the First International Conference on
Cloud Computiong (CloudCom), pages 674-679, 2009.

