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Abstract—On many distributed platforms, consensus among
multiple servers should be obtained in order to maintain consis-
tent system state. Paxos has been selected as the core of many
different distributed services, such as lock services and storage
services. This report presents an empirical study on a name
service based on Paxos in a virtualized environment. Details of
the design as well as matters concerned during implementation
are discussed. We also propose an API for general name services.

I. INTRODUCTION

Name service is a core function in cloud-based systems. It
supports storing attribute and value pairs as well as retrieving
information when it is given the name of an entry. Therefore,
clients can write data into the database of the name service
server and read what they have written later, or they can
communicate with other clients by writing and reading a
specific entry with a name they have agreed on. Remote
procedure calls have embeded this service to store the function
name and the computer destination in order to match users
requests to the right machine [2]. DNS also serves as a world-
wide venue to resolve the IP address for a domain name.
Similar use cases can be seen in a large number of applications
and systems.

In prior work, we have implemented a name service server
served by a single process. This server listens to clients and
handles their requests 24 by 7 if it runs steadily and encounters
no failure. However, the server can never be perfect and we
should expect failures of the server. Hence, multiple servers
should collaborate to avoid the suspension of the service.

To provide a reliable and fault-tolerant service, we need
multiple machines (or virtual machines) to act as a server
cell. To guarantee users can obtain the same response from
different servers when the database is steady, the database of
different servers should be consistent regarding the state of
entries in the database in a particular time when all pending
updates have been fulfilled. To obtain the consistency, we run
a consensus algorithm, Paxos, among those servers [6][5].

In this report, we discuss the design of the distributed name
service and the details of the implementation. We show the
evaluation results and discuss possible improvements as future
work.

II. RELATED WORK

One noticeable example of Paxos-base system software is
the Chubby lock service for loosely-coupled distributed system
which intends to provide datacenter-wide locking as well

as reliable storage [3]. While Chubby combines the locks
and reliable storage in one service, Boxwood[7] is another
lock service with a different design: it explicitly contains
three major parts, a lock service, a Paxos service and a
failure detection service. The Paxos algorithm in Boxwood is
implemented as a library, which is used to stored client states,
and might be able to be reused in other projects.

ZooKeeper is also an important service with the Paxos core
for maintaining configuration information, naming, providing
distributed synchronization, and providing group services [4].
The broadcast protocol in ZooKeeper, Zab, employs the Paxos
algorithm to make the service tolerant to failures and loss of
messages [9].

Google’s Megastore is another application of the Paxos algo-
rithm for data storage and retrieval among its geographically
distributed datacenters [1]. Megastore uses Paxos to replicate
user data and provide responsive services among different
datacenters. Megastore uses a non-master based Paxos imple-
mentation.

III. DESIGN

The name service is a database with names and attributes
which supports data insertion and retrieval across a network.
“Attributes” are the values determined by ‘“names”. The
collection of names and their associated attributes constitute
a database, in which a name is assumed to be unique. With
a specified name and different commands, the content of the
name can be created, updated and deleted. Although these
three actions are different in context, they are all handled by
the Paxos protocol.

A. Requirements

To achieve consensus among multiple nodes with lossy
communication channels in the Paxos protocol, a series of
actions, which is called a synod, is conducted before an entry
can be inserted or updated in the database. A vote is a node’s
decision upon a synod. A majority of the nodes need to
confirm their availability for the votes and vote for the related
update later. Successful votes are then broadcast to the nodes
for later updates. Through these communications among
nodes, only one value is allowed for a synod with a particular
instance number. This algorithm provides the consistency
among servers by requiring that the selected value must be
accepted by a majority of servers. A technical challenge is
that, to become an applicable service in datacenters, it must
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be fast in response and stable.

B. Definitions

In order to provide a fault-tolerant distributed name service,
multiple processes on multiple nodes need to maintain their
own databases to prevent server failures as well as to increase
the throughput of the service. To guarantee the consistency
of the database of different processes, we run the Paxos
algorithm among the processes. The following sections
present the basic design of the service. Some terminologies
are defined below.

Replica
A process duplicated to store data with redundancy
as well as to improve the throughput of the service.

Synod
A series of actions conducted to achieve consensual
knowledge of a particular update among multiple
nodes.

Vote
A value proposed to meet agreement among multiple
processes during a synod.

President
A process which is in charge of proposing a vote
among the replicas

C. Communication between replicas

A process should have a copy of other replicas’ IP addresses
and port numbers in order to communicate with them. Since
different replicas have different sockets to listen to clients, it is
sufficient to use the IP address and port number to distinguish
the replicas.

Every process has a process table and it needs to maintain it
continuously. When a process needs to send messages to other
processes, it needs to retrieve IP addresses and port numbers
of the receiving processes. The IP address and port number of
the president should be marked in the process table.

In addition, the table should also record time stamp for the
addresses. Addresses that failed to renew their live status
should be neglected.

D. Replica Roles

The president is in charge of the process of voting of
every individual synod. It records the total instance number,
LATEST. When it wants to purpose a new vote, LATEST will
be the instance ID.

A thread will be created to be the president of a single
synod [6] (see Fig. 5 for the state diagram of a single
synod and Table I for the detailed definition of terms). It
sends prepare requests with proposal ID SYNOD_N to a
selected majority of processes in its ID table. It waits for
the “promises” until a predefined time interval elapses, say
WAIT_PROMISE_TIME. If it cannot receive replies from a
majority of processes within the time interval, it resends the
“prepare” request with a different majority and repeats the

previous process. If it receives the promises from a majority
of processes, it determines the voted value according to the
replies and continues to the “accept” step by sending to the
majority of processes “accept messages”.

To learn about the instance value of a specific single synod,
we let the president wait for the replies of “accept messages”,
namely “accepted messages”, from replicas. If it can collect
a majority of replies, it means that the value is successfully
determined, i.e. a majority of replicas know about the vote
value. Then it sends “confirm messages” to other replicas to
broadcast the vote value, then the synod ends successfully. If
it cannot collect a majority of “accepted messages”, it means
that some of the replicas previously promise their acceptance
fail to accept the vote due to another promise to a higher vote
number or failure and the synod ends with failure.

TABLE II
CONFIGURATION OF CONSTANTS

SERVER PORTBASE 1700
RENEW PORTBASE 1800
RENEW TIME (sec) 30
RENEW TIMEOUT (sec) 60
RENEW SLEEP (sec) 10
WAIT PROMISE (sec) 1
WAIT PROMISE TIME (us) 55000
HASHSIZE 10000
DGNS1 1P 10.0.1.101
DGNS2 IP 10.0.1.102
DGNS3 IP 10.0.1.117
DGNS4 1P 10.0.1.118
DGNSS IP 10.0.1.119

E. Replicas

Apart from requests from the network, replicas receive

voting messages from president. It assigns a task to a thread
with the messages. The voting tasks look up the instance log
and react according to the Paxos protocol.
A replica updates its own database sequentially according to
its log until it hits an empty entry for an synod. An empty
synod occurs when a replica has a failure earlier and misses
the vote or when the entry is indeed empty for all replicas (a
vote to be determined). When it encounters an empty entry,
it asks the president for the synod information and updates it
accordingly. All updates are done by a separate thread.

F. Failures and membership management

When a failure occurs, some servers might stop listening
to the president and clients. New servers will be started to
guarantee a large enough number of replicas know about the
information and duplicate the database. However, new servers
should not contribute to the votes immediately after the start
up since the information in their database is not complete.
When a new node starts, it sends renew messages to other
replicas and announce its existence. Other replicas will notice
that it is new and avoid sending it vote messages such as
“prepare” and “accept”. The new member will start copying
older vote decisions from other replicas. Only when its vote
information is nearly up-to-date is it eligible to participate in
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TABLE 1
SYNOD STATE DESCRIPTION

State Action What it actually does

P_INIT
P_REQUEST_PREPARE
P_WAIT_PROMISE
P_REQUEST_ACCEPT
P_WAIT_ACCEPT_RESPONSE
P_REQUEST_CONFIRM

initialize the synod with client request information

select a majority of replicas and send prepare messages to them

wait for promise from the selected majority and count the number of promises

send accept messages to the selected majority

wait for accepted messages from the selected majority the count the number of responses

send determined vote value to all replicas to announce the vote

votes.

Also, packets can be lost due to congestion in the network,
and replicas might fail to receive messages from others. In this
case, the president might not receive enough responses from
other replicas, and replicas might miss the confirm messages,
which leads to empty vote entry. Whenever a replica hits an
empty entry in the vote databases and it cannot update its
database, it sends a WANT request to the president to acquire
the missing data. When a president receives a WANT request,
it replies according to its database state or start the synod again
if its database does not contain that particular entry of vote.

G. Running

Each running process maintains an instance database in
memory. The synod information is stored in a hash table,
which we will illustrate later.

1) Set: Whenever a replica receives a “set_value” request,
it needs to notify other replicas of the update. If it is not the
president, it directs the request to the president and let the
president begin a vote and determine the instance number of
the “set_value” request. If it is the president, it proposes a vote
immediately. For example, if DGNS 2 receives a “set_value”
request, it forwards it to the president to start a new synod
(see Fig. 2).

2) Read Data: fast read and slow read: Packets are directed

to replicas to improve the processing throughput. Since each
replica has its own database, it can process “get_value” by
reading locally. However, this does not guarantee the result is
the newest because it is possible that a replica does not know
the latest update. We may call this kind of read “fast read”.
Fig.1 shows that all replicas, including the president, receive
requests from clients.
If a user requests for the newest value, we may process a “slow
read” for him. This requires that all “set_value” requests before
the slow read should be processed. This can be done by using
a set command for a get instance.

H. View of service from clients

What clients can see is only the name service. They send
requests and get responses. They do not know whether the
service is distributed or not, so we should be able to direct
requests to replicas with less waiting requests.

IV. IMPLEMENTATION

This part presents some implementation detail of the
service. Configuration of the system values are presented in

Replica 3 Replica 4

Fig. 1. All servers listen to the clients and replies to the client directly for
“get” requests.

President Repljca 1 Replica 2

Replica 3

Replica 4

Fig. 2. All servers listen to the clients and will forward the message to the
president when the requests are “set”. After the president decided the synod
value, it replies to the client directly.

Table II. The main state diagram for the president and the
replicas are shown in Fig. 3 and Fig. 4, and Table III shows
the action of participating threads.

A. Maintenance of process address table and status renewal
of processes

When the service is started, processes load the configuration
file with the IP address and port number into the IDtable.
Processes need to renew their status continually. A replica
sends heartbeat messages to others in every interval specified
as RENEW_TIME.

To avoid “heartbeat messages” messing up with client requests,
a thread is created just for renewing status and processing
“heartbeat messages”. A separated socket is opened for this
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TABLE III
ACTIONS OF THREADS

Thread Name Thread Action

dataquery Fast read
pSynod(president only)
prepare

accept

confirm

Forward_msg(replicas only)

create a synod prepare messages to them

Read previous vote information and replies to the president
Update the vote information and replies to the president
Update the vote log

Forward the “’set” from clients to the president

['GET"] / new thread dataquery ["ACCEPT"]/ create new thread accept

["CONFIRM"] / new thread confirm
LISTEN

['PREEPARE"] / create new thread prepare

["SET"]/ new thread pSynod

Fig. 3. President Main State Diagram

['GET"] / new thread dataquery ["ACCEPT"]/ create new thread accept

['CONFIRM"] / new thread confirm
Ll

STEN

['PREEPARE"]/ create new thread prepare

["'SET"] / new thread forward_msg

Fig. 4. Replica Main State Diagram

thread.

B. Initialization

When the service starts, all replicas are created with
their unique identification numbers (replica IDs) set by the
administrator. The replica with ID 1 (DGNS 1) is regarded
as the president in the current implementation.

Different replicas have different ports to listen to clients.
The base of the SERVER_PORT is 1700, and the port
for a specific replica with identification number ID is
SERVER_PORT+ID. Thus, distinct port for replicas with the
same IP is guaranteed.

Inside the IDtable maintained by each nodes, every entry
is an IDnode for a particular process with the IP address,
port number and timestamp in precision to a microsecond.
Assuming the clock error among processes to be around
0.6 second per week [8], we do not implement the
synchronization of clocks of different processes. This might
affect the performance of the IDtable when some processes
fail to renew their status in time according to the time of
another replica. This time error will not introduce error into
the service because the outcome will only be false failure of

peers.

?

/ P_INIT,P_REQUEST_PREPARE

timeout or higher vote ID received] / P REQUEST PREPARE
P WAIT PROMISE ‘

[A majority promise] / P_REQUEST_ACCEPT

P WAIT ACCEPT RESPONSE

[the majority response] / P_REQUEST_CONFIRM,reply "OK" to client

[timeout]

Fig. 5. Synod State Diagram

C. In memory hash table

To accelerate the speed for read and write, an in-memory
hash table is implemented (modified from an on-line source).
The tuple to be stored is in the form (name, attribute), name
acting as a unique key and hashed to an ID which will be used
to store and relocate the value.

The hash function is defined as follow, which is the original
design of the on-line source. For a string S with n characters

51,52, 53,54, -+, Sn

the hash ID is calculated as
HI = (51 x31" ' 455x31" 2 4...+s,) mod HASHSIZE

where HASHSIZE is a predefined value.

Moreover, the database of synods and confirmed vote infor-
mation is stored in the memory as well. This avoids reading
from and writing to hard disks frequently. The entries are not
randomly hashed by a hash function; instead, they are stored
in a table of linked list consecutively. For example, with size
of the table to being 100, vote #1 will be stored in the first
linked list, vote #2 in the second linked list, vote #101 in the
first list, etc.
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D. Programming Interface

DGNS presents its programming interface as a library.

1) Library at Client Side: The library is implemented
in the file “service.c”. Clients only need the lib file and
“service.h” to use the service. Two functions are provided for
the clients to contact the Generic Name Service servers, with
self-explanatory names “set_value()” and “get_value()”.

In the current version of the library, to communicate with a
replica, the client needs to know the replica’s IP address and
port number. An example of IP addresses and port number of
the replicas are shown in the Table II .

The API for the library are

int set_value(char* name, char* value, char* addr, int port);
int get_value(char* name, char* addr, int port, char res[]);

For example, we want to insert the pair (‘“almond”, “tree”)
into the database, where “almond” is the name and “tree” is
the value corresponding to “almond” to DGNS1. Then we use
the function as

set_value(‘“‘almond”, “tree”, “10.0.1.1017,1701);

Later, we want to get the valueassociated with “almond”. We
use

get_value(“almond”, “10.0.1.101”,1701);

Both functions return 1 if successful (the server replies with
confirm information within a time frame), and O if not (no
reply from the server, or no entry retrieved for get_value).

V. EVALUATION

To provide a fast and reliable name service, we want to
measure the performance of DGNS in terms of throughput
on average for small number as well as large number of
users. Two kinds of experiments are conducted; one is to
measure the response time of the service with different size
of database, and the other is to measure the response time for
different size of using clients. The first experiment, namely
sequential experiment, is to evaluate the throughput of the
service, that is, the average time needed to satisfy a request
when only one client is using the service. This experiment
has one independent parameter, size of the database. We want
to measure the influence on the service speed by enlarging
database in the replicas. The second experiment, namely the
concurrent experiment, is to measure the influence on the
speed of response when a large number of clients are using
the service. The success rate and response time for different
number of clients are traced.

The evaluation is based on a predefined database with pairs
of names and attributes. Every name or attribute is a string
of characters less than 10 bytes, and the pairs are stored in
a file from which the name and attribute are loaded during
evaluation. When a client needs to send a request, it selects
a pair of words and send the pair to the server to “set” the
attribute associated with the name, or send the first element
of a pair to “get” the attribute. The database contains different
pairs of words depending on the configuration. The server

consists of 5 replicas on 5 different virtual machines DGNS|1
to DGNSS (all on the physical host 10.0.1.24, with IPs
10.0.1.101, 10.0.1.102, 10.0.1.117, 10.0.1.118 and 10.0.1.119,
respectively).

In the sequential request evaluation, multiple batches of 1k,
10k and 100k pairs of names and attributes are loaded into
the database first and then selected to write into the server
to produce different memory footprint. Fig 6 shows the per-
centage of requests satisfied within a time range. The majority
are completed in less than 2ms, while some requests can take
longer than 10000m:s.

We also simulate different number of concurrent clients. The
clients are on the same VM 10.0.1.102. In total, 5 VMs on
the same rack are used to support the service. The clients send
requests to one of the 5 VMs randomly each time. During an
experiment, a user sends one “set” request. The experiments
were conducted multiple times with 10 users and 100 users.
Fig. 7 shows the results of the evaluations. From the client
side, not all requests are fulfilled (see Table ?? ), while from
the server’s view, they have processed all requests for the 15
and 274 experiment. When the user size increases to be 1000,
the president died twice.

The time spent on the server is also measured in details.
In memory logging is applied to store the time and loaded
after every synod. Since the requests are numbered after
readClientRequest(), the timer starts when a synod recognizes
the synod ID for the current vote, which is marked at time 0.
Afterwards, the timer records the time spent since time 0. Fig.
8 shows the average execution time for different batches of
sequential requests. The overall throughput of the service is
shown in Fig. 9, which presents that the throughput is around
700 per second. Even with increasing number of processed
requests, the throughput is quite stable.

Performance of fast read requests are shown in Fig 10. From
the figure, we can see that the maximum time consumed for
a non-null reply (the tuple with the key requested exists in
the database) has a log-relationship with the total number of
requests, while the average response time for both null and
non-null replies stay around 500 microseconds. For the null
replies, however, the maximum time increases to more than
3ms likely due to the limited current hash size.

3500
===« Average Response

3000 Vil Time( nonnull
/
/ = Max(nonnull
2500 71—
P
2000 — Min(nonnull)
- /
— _,/

~~~~~~ Average Response
Time(null)

1000
=== Max(null)

500 — s ¢ o+ st Sl * Sk

Min(null)

1k 10k 100k

Fig. 10. Time cost of sequential “get” requests
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Fig. 6.
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Fig. 7. Time cost of different number of users sending “set” requests.

VI. CONCLUSION

This report presents the design and implementation de-

tails of the Distributed Generic Name Service. Two major
experiments on virtual machines have been conducted to
evaluation the performance of the service. Further experiments
on physical machines will be conducted.
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Fig. 8. In memory time measured for the president
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