
IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, MONTH YEAR 1

DVM: A Big Virtual Machine for
Cloud Computing

Zhiqiang Ma, Zhonghua Sheng, Lin Gu Member, IEEE

Abstract—As cloud-based computation grows to be an increasingly important paradigm, providing a general computational interface to

support datacenter-scale programming has become an imperative research agenda. Many cloud systems use existing virtual machine

monitor (VMM) technologies, such as Xen, VMware, and Windows Hypervisor, to multiplex a physical host into multiple virtual hosts

and isolate computation on the shared cluster platform. However, traditional multiplexing VMMs do not scale beyond one single physical

host, and it alone cannot provide the programming interface and cluster-wide computation that a datacenter system requires. We design

a new instruction set architecture, DISA, to unify myriads of compute nodes to form a big virtual machine called DVM, and present

programmers the view of a single computer where thousands of tasks run concurrently in a large, unified, and snapshotted memory

space. The DVM provides a simple yet scalable programming model and mitigates the scalability bottleneck of traditional distributed

shared memory systems. Along with an efficient execution engine, the capacity of a DVM can scale up to support large clusters. We

have implemented and tested DVM on four platforms, and our evaluation shows that DVM has excellent performance and scalability.

On one physical host, the system overhead of DVM is comparable to that of traditional VMMs. On 16 physical hosts, the DVM runs 10

times faster than MapReduce/Hadoop and X10. On 160 compute nodes in the TH-1/GZ supercomputer, the DVM delivers a 12.99x

speedup over the computation on 10 compute nodes. The implementation of DVM also allows it to run above traditional VMMs, and we

verify that DVM shows linear speedup on a parallelizable workload on 256 large EC2 instances.

Index Terms—Distributed Systems, Concurrent Programming, Datacenter, Virtualization, Cloud Computing

✦

1 INTRODUCTION

Virtualization is a fundamental component in cloud
technology. Particularly, ISA-level virtual machine mon-
itors (VMM) are used by major cloud providers for
packaging resources, enforcing isolation [1], [2], and
providing underlying support for higher-level language
constructs [3]. However, the traditional VMMs are typi-
cally designed to multiplex a single physical host to be
several virtual machine instances [4], [5], [6]. Though
management or single system image (SSI) services can
coordinate multiple physical or virtual hosts [6], [7],
[8], they fall short of providing the functionality and
abstraction that allow users to develop and execute
programs as if the underlying platform were a single big
“computer” [9]. Extending traditional ISA abstractions
beyond a single machine has only met limited success.
For example, vNUMA extends the IA-64 instruction set
to a cluster of machines [10], but finds it necessary to
simplify the memory semantics and encounters difficulty
in scaling to very large clusters.
On the other hand, exposing the distributed detail of

the platform to the application layer leads to increased
complexity in programming, decreased performance,
and, sometimes, loss of generality. In recent years, appli-
cation frameworks [11], [12] and productivity-oriented
parallel programming languages [13], [14], [15], [16]

• Z. Ma, Z. Sheng and L. Gu are with the Department of Computer Science
and Engineering, The Hong Kong University of Science and Technology.
E-mail: {zma,szh,lingu}@cse.ust.hk

have been widely used in cluster-wide computation.
MapReduce and its open-source variant, Hadoop, are
perhaps the most widely-used framework in this cat-
egory [17]. Without completely hiding the distributed
hardware, MapReduce requires programmers to parti-
tion the program state so that each map and reduce task
can be executed on one individual host, and enforces a
specific control flow and dependence relation to ensure
correctness and reliability. This leads to a restricted
programming model which is efficient for “embarrass-
ingly parallel” programs, where data can be partitioned
with minimum dependence and thus the processing is
easily parallelizable, but makes it difficult to support
sophisticated application logic [17], [18], [19], [20]. The
language-level solutions, such as X10 [14], Chapel [21]
and Fortress [13], are more general and give program-
mers better control over the program logic flows, par-
allelization and synchronization, but the static locality,
programmer-specified synchronization, and the linguis-
tic artifacts influence such solutions to perform well with
one set of programs but fail to deliver performance,
functionality, or ease-of-programming with another. It
remains an open problem to design an effective system
architecture and programming abstraction to support
general, flexible, and concurrent application workloads
with sophisticated processing.
Considering that ISAs indeed provide a clearly de-

fined interface between hardware and software and al-
low both layers to evolve and diversify, we believe it
is effective to unify the computers in a datacenter at the
instruction level, and present programmers the view of a

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, MONTH YEAR 2

big virtual machine that can potentially scale to the entire
datacenter. The key is to overcome the scalability bottle-
neck in traditional instruction sets and memory systems.
Hence, instead of porting an existing ISA, we design a
new ISA, Datacenter Instruction Set Architecture (DISA),
for cluster-scale computation. Through its instruction set,
memory model and parallelization mechanism, the DISA
architecture presents the programmers an abstraction of
a large-scale virtual machine, called the DISA Virtual
Machine (DVM), which runs on a plurality of physical
hosts inside a datacenter. It defines an interface between
the DVM and the software running above it, and en-
sures that a program can execute on any collection of
computers that implement DISA.

Different from existing VMMs (e.g., VMware [6],
Xen [4], vNUMA [10]) on traditional architectures (e.g.,
x86), DVM and DISA make design choices on the in-
struction set, execution engine, memory semantics and
dependence resolution to facilitate scalable computation
in a dynamic environment with many loosely coupled
physical or virtual hosts. There are certainly many tech-
nical challenges in creating an ISA scalable to a union
of thousands of computers, and backward compatibility
used to constrain the adoption of new ISAs. Fortu-
nately, the cloud computing paradigm presents oppor-
tunities for innovations at this basic system level—first,
a datacenter is often a controlled environment where
the owner can autonomously decide internal technical
specifications; second, major cloud-based programming
interfaces (e.g., RESTful APIs, RPC, streaming) require
minimum instruction-level compatibility; finally, there is
only a manageable set of “legacy code”.

As an approach to supporting computing in datacen-
ters, the design of DVM has the following goals.

• General. DVM should support the design and exe-
cution of general programs in datacenters.

• Efficient. DVM should be efficient and deliver high
performance.

• Scalable. DVM should be scalable to run on a
plurality of hosts, execute a large number of tasks,
and handle large datasets.

• Portable. DVM should be portable across different
clusters with different hardware configurations, net-
works, etc.

• Simple. It should be easy to program the DVM;
DISA should be simple to implement.

With the design goals stated, we revisit the approach
and rationale of unifying the computers in a datacenter
at the ISA layer. The programming framework, language,
and system call/API are also possible abstraction lev-
els for large-scale computation. However, as aforemen-
tioned, the frameworks and languages have their limita-
tions and constraints. They fall short of providing the re-
quired generality and efficiency. Using system calls/APIs
to invoke distributed system services can be efficient
and reasonably portable. However, an abstraction on
this level creates dichotomized programming domains

Fig. 1: Organization of 2 DVMs on 3 physical hosts.

and requires the programmers to explicitly handle the
complexity of organizing the program logic around the
system calls/APIs and filling any semantic gap, which
fails to provide the illusion of a “single big machine”
to the programmers and leads to a far less general and
easy-to-program approach than what we aim to design.
The existing ISAs, designed for a single computer with
up to a moderate number of cores, can hardly provide
the scalability required by the “machine” that scales
potentially to the datacenter size. On the other hand,
the design of the DVM is motivated by the necessity
of developing a next-generation datacenter computing
technology that overcomes several important limitations
in current solutions. The DVM should provide the basic
program execution and parallelization substrate in this
technology, and should meet all the goals on generality,
efficiency, scalability, portability and ease-of-programming
(with compilers’ help). This leads us to choose the ISA
layer to construct a unified computational abstraction of
the datacenter platform. To break the scalability bottle-
neck in traditional ISAs and retain the advantages of
generality and efficiency, we design the new ISA, DISA,
and build the DVM on this architecture.
We implement and evaluate DVM on several plat-

forms. The evaluation results (refer to Section 4) show
that the performance of the programs benefit much from
the ISA-level abstraction—DVM can be more than 10
times faster than Hadoop and X10 on certain workloads
with moderately iterative logic, and scale up with near-
linear speedup to at least 256 compute nodes on paral-
lelizable workloads.
The structure of this paper is as follows. We give

an overview of DVM in Section 2. Section 3 presents
the designs of DISA, memory space and parallelization
mechanisms. Section 4 describes the implementation and
the evaluation results. We discuss related work in Sec-
tion 5 and conclude the paper in Section 6.

2 SYSTEM OVERVIEW

The architecture of DVM is illustrated in Fig. 1. Many
DVMs can run in one physical host as the traditional
VMMs to multiplex the resources of the host, and a DVM
can run on top of multiple or many physical hosts to
form a big virtual machine in a datacenter.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, MONTH YEAR 3

2.1 System organization

We abstract a group of computational resources in-
cluding processor cores and memory to be an available
resource container (ARC). In the simplest form, an ARC is
a physical computer. However, it can also materialize as
a traditional virtual machine or other container structure,
given the container provides an appropriate program-
ming interface and adequate isolation level. Although
one ARC is exclusively assigned to one DVM during
one period of time, the ARCs in one physical host may
belong to one or more DVMs and one DVM’s capacity
can be dynamically changed by adding or removing
ARCs. Hence, the capacity of a DVM is flexible and
scalable—a DVM can share a single physical host with
other DVMs, or include many physical hosts as its ARCs.
A DVM accommodates a set of tasks running in a uni-

fied address space. Although DVMs may have different
capacity and the size of a DVM can grow very large
depending on the available resources, the DVMs provide
the same architectural abstraction of a “single computer”
to programs through the DISA.
The programs in DVMs are in DISA instructions and a

program running inside a DVM instantiates to be a num-
ber of tasks called runners executing on many processor
cores in many ARCs. Inside an ARC, many runners, each
residing in one runner compartment (RComp), can execute
in parallel. The RComp is a semi-persistent facility that
provides various system functions to runners and a
meta-scheduler (discussed later) to facilitate and manage
runners’ execution. Specifically, the RComp a) accepts
the meta-scheduler’s commands to prepare and extend
runners’ program state and start runners, b) helps the
memory subsystem handle runners’ memory accesses,
c) facilitates the execution of instructions such as newr

(see Table 1), d) sends scheduling-related requests to the
meta-scheduler, and e) provides I/O services. As these
functions are tightly correlated with other subsystems
of DVM, we introduce pertinent details of the RComp
design along with the treatise of the other system compo-
nents in Section 3. Suffice it at present to know that one
RComp contains at most one runner at a specific time,
and it becomes available for accommodating another
runner after the current incumbent runner exits.
The DVM contains an internal meta-scheduler (sched-

uler) to schedule runners executing in RComps. The
scheduler is a distributed service running on all con-
stituent hosts of a DVM, with one scheduler master
providing coordination and serialization functions.

2.2 Programming in DISA

We use one example to illustrate how to write a simple
program on a DVM using DISA. Details of the DISA
architecture will be introduced in Section 3, and a more
complex example is introduced in [22].
The following DISA code performs a sum operation of

two 64-bit integers by a sum_runner runner. The starting
address of the memory range storing the two integers is

Fig. 2: Execution of an add instruction.

in 0x300001000, and 0x300001008 contains the address
where the results should be stored. The text after “;” in
a line is a comment, and the runner’s name is in italic.

1 sum_runner:

2 add (0x300001000):q, 8(0x300001000), (0x300001008)
3 ; :q indicates 64-b data

4 mov:z $1:q, 8(0x300001008):q ; set exit code
5 exit:c ; exit and commit

The code above adds two 64-bit integers with all
operands stored in memory. Fig. 2 shows the ex-
ecution of the sum operation. Suppose the memory
location 0x300001000 and 0x300001008 store values
0x800000000 and 0x900000000, respectively. The add

instruction at line 2 obtains the operands at 0x800000000
and 0x800000008, computes the sum, and stores the sum
in 0x900000000. The mov:z instruction at line 4 sets the
exit code for the runner with zero-extension at address
8(0x300001008) (0x900000008 after dereferencing). Fi-
nally, the exit:c instruction at line 5 makes the runner
exit and commit its changes to the memory. After being
committed, the changes become visible to other runners.
The example illustrates several important design

choices of DISA. First, it uses memory addressing, not
combined register-memory addressing, for all operands.
With an emphasis on instruction orthogonality, DISA al-
lows an instruction to freely choose memory addressing
modes to reference the operands. Second, DISA provides
a low-level abstraction which is close to hardware and
the semantics of most of the instructions are common
in other widely used ISAs. With this design, DISA
retains traditional ISAs’ advantages, such as generality
and efficiency, and it is easy to map DISA to hardware
or another common ISA at low cost. Finally, the com-
mit operation, which makes a runner’s changes to the
memory visible to other runners, occurs at the end of a
runner’s execution. This arrangement enforces a clearly
defined runner lifecycle and its semantics concerning the
program state of the DVM.

3 DESIGN

We design DISA as a new ISA targeting a large-scale
virtual machine running on a plurality of networked
hosts and build the DVM above this architectural ab-
straction. In this section, we first introduce the design

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, MONTH YEAR 4

TABLE 1: DISA instructions
Instr. Operands Effect
mov D1, M1 Move D1 to M1

add D1, D2, M1 Add D1 and D2; store the result in M1

sub D1, D2, M1 Subtract D2 from D1; store the result in M1

mul D1, D2, M1 Multiply D1 and D2; store the result in M1

div D1, D2, M1 Divide D1 by D2; store the result in M1

and D1, D2, M1 Store the bitwise AND of D1 and D2 in M1

or D1, D2, M1 Store the bitwise OR of D1 and D2 in M1

xor D1, D2, M1 Store the bitwise exclusive OR of D1 and D2 in M1

br D1, D2, M1 Compare D1 and D2; branch to M1 if a specific condition is met
bl M1, M2 Branch and link (procedure call)
newr M1, M2, M3, M4 Create a new runner
exit Exit and commit or abort

Mn specifies an operand in memory; Dn specifies an operand in memory or an immediate operand.

of DISA’s instructions, and then present DISA’s memory
model in Section 3.2 and the parallelization mechanism
in Section 3.3.

3.1 DISA

Given the system goals of the DVM design as listed in
Section 1, the goals of the DISA design are as follows.

• DISA should support a memory model and paral-
lelization mechanism scalable to a large number of
hosts.

• DISA programs should efficiently execute on com-
mon computing hardware used in datacenters,
which are usually made of commodity components.
Certain hardware may provide native support to
DISA in the future, although we emulate DISA
instructions on the x86-64 architecture in our current
implementation.

• DISA instructions should be able to express general
application logic efficiently.

• DISA should be a simple instruction set with a
small number of instructions so that it is easy to
implement and port.

• DISA should be Turing-complete.

In summary, DISA should be scalable, efficient,
general, simple, and Turing-complete. To ensure pro-
grammability, simplicity and efficiency, DISA, as shown
in Table 1, includes a selected group of frequently used
instructions. In addition, the newr and exit instructions
facilitate construction of concurrent programs with many
execution flows. Our prior work shows the Turing com-
pleteness by using DISA to emulate a Turing-complete
subleq machine [22].
A DISA instruction may use options to indicate spe-

cific operation semantics, such as the options :z and
:c in the sum_runner example in Section 2.2, and the
operands can reference immediate values or memory
contents using direct, indirect or displacement address-
ing modes. Although not explicitly providing regis-
ters, the unified operand representation permits register-
based optimization because the memory model allows
some memory ranges in DR (Direct-addressing Region,
discussed in Section 3.2), which can only be referenced
with direct addressing, to be affiliated with registers. We

(a) Mapping of RAMRs to physical
registers in x86-64

region

boundary

memory

ranges

...

Page X

Private

Region

(PR)

Shared

Region

(SR)

Memory

Space

Page 4

Page 3

Page 2

Page 1

Page 0

(b) Organization of the memory
space

Fig. 3: Organization of the memory space and RAMRs

name these ranges Register-Affiliated Memory Ranges or
RAMR for short.
Fig. 3(a) shows the RAMR to physical register map-

ping in our implementation on x86-64. DISA currently
supports 8 registers named RAMR 0 to 7. The program-
mers or compilers can use these RAMRs to store most
frequently accessed data in the program to improve the
performance. In our evaluation discussed in Section 4,
we show that using RAMRs can speed up the loop
microbenchmark by more than 5 times.
At first glance the RAMR design seems to make DISA

less portable. However, the programs using RAMRs
need not to be changed for DVMs on different platforms.
On a platform that has fewer physical registers in the
processors than the RAMRs, the RAMRs simply revert
to direct-addressed memory ranges. Hence, a DVM can
speed up the programs with physical registers as much
as possible while ensuring the portability and correct-
ness.

3.2 Unified memory space

To facilitate the illusion of programming on a single com-
puter, DISA provides a large, flat, and unified memory
space where all runners in a DVM reside. The memory
layout is shown in Fig. 3(b). The memory space of a
DVM is divided into two regions–the private region (PR)
and the shared region (SR). The starting address of the SR
is the region boundary (RB) which is just after the address
of PR’s last byte. Inside PR, there is a special region,
direct-addressing region (DR), in which memory ranges

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, MONTH YEAR 5

can only be referenced in the direct addressing mode.
The DR allows the program to access system resources,
such as RAMR (discussed in Section 3.1) and I/O chan-
nels (to be discussed in Section 3.4), with the unified
operand representation using memory addressing.
A write in an individual runner’s PR does not affect

the content stored at the same address in other runners’
PRs. In contrast, the SR is shared among all the runners
in the sense that a value written by one runner can be
visible to another runner in the same DVM, with DISA’s
memory consistency model controlling when values be-
come visible. A runner can use the PR to store temporary
or buffered data because of its very small overhead, and
use the SR to store the main application data which may
be shared among runners. In our implementation on the
x86-64 platform, we set RB to 0x400000000 and an appli-
cation can use a 46-bit memory address space. Therefore,
programs can potentially store around 64TB data in the
SR and each runner can store several gigabytes of data
in its PR, which is sufficient for most of the applications
in datacenters.
Snapshot-based consistency. The consistency model

of a shared memory system specifies how the system
appears to programmers, placing restrictions on the
values that can be returned by a read, and is critical
for the system’s performance [23]. In DISA, a runner’s
memory operations have a transaction-like semantics
and completes as an atomic unit. We use the snapshot-
based memory consistency model, in which every runner
sees a consistent view of the memory space of a specific
instantiation time, and the system imposes a sequential
ordering of runners’ commits. DISA’s consistency model
allows a runner to read data in its snapshot and pro-
ceed to commit successfully without being disrupted by
concurrent updates and commits from another runner,
providing the same properties as standard snapshot
isolation [24], which is adopted by many relational
databases.
DISA’s snapshot-based consistency model relaxes the

read/write order on different snapshots. In DISA, a snap-
shot is a set of memory ranges instantiated with the
memory state at a particular point in time. A memory
range is a sequence of consecutive bytes starting from a
memory address. After a snapshot is created for a runner,
later updates to the associated memory ranges by other
runners do not affect the state of the snapshot. Hence,
when reading data from an address in a snapshot, a
runner always receives the value the runner itself has
written most recently or the value stored at the address
at the time the snapshot is created. DISA permits con-
current accesses optimistically, and detects write conflicts
automatically. With this consistency model, it is possible
to implement atomic writes of a group of data, which
are commonly used in transactional processing and other
reliable systems requiring ACID properties. This model
indeed introduces slight constraints on the organization
of programs: only one of many runners that concurrently
write to the same location can commit successfully and

the other runners need to give up or retry. However, it
assures programs written this way are much easier to
understand and reason about their correctness, as well
as improves the system’s scalability.
Managing snapshot metadata. The consistency model

of DISA provides programs a clearly-defined memory
semantics and enables scalable parallel processing. How-
ever, it is challenging to efficiently manage a large num-
ber of snapshots in the memory space. The snapshot’s
semantics, which ensures that any later changes of the
memory content should not affect the existing snapshots,
requires that the memory subsystem maintain more than
one version of the memory content. To efficiently sup-
port the snapshot management, the memory subsystem
organizes the SR as a sequence of fixed-size pages and
each page has two versions—a current version and a non-
current version. The current version is the last committed
version, and a snapshot consists of a number of pages of
their current versions at the time the snapshot is created.
The non-current version of a page is not included in
newly created snapshots. A page’s previous version
before the current one, which may be still used by some
runners, can be tracked with the non-current version by
the memory subsystem.
With the two-version design, the memory subsystem

need to only maintain a small amount of metadata for
the pages, and can efficiently handle a large number
of snapshots. Meanwhile, the current and non-current
version design is friendly to the read-only sharing of
data—many runners can read shared data with snapshot
isolation and complete their execution given they write
to disjoint locations. The two-version design indeed
implies a slight limitation that some runners may need
to wait for available page versions. Typically, there are
many runners schedulable in a DVM and the waits
usually occur to a small fraction of them. Hence, the lim-
itation does not lead to noticeable performance penalty
in practice. On the other hand, this design enables the
system to scale, efficiently managing many concurrent
snapshots.
To assist the runners in using the shared and snapshot-

ted SR in the unified memory space, components of the
DVM cooperate to manage the snapshots and facilitate the
memory accesses. The scheduler manages the snapshots
and coordinates runners to execute on RComps tak-
ing locality into consideration. The memory subsystem
serializes the committing of the memory ranges only
when runners exit. The RComps facilitate the memory
subsystem to handle the runners’ memory accesses by
leveraging the virtual memory hardware to catch and
handle the page fault when a runner accesses a page for
the first time, following well-known practices [25], [26].
When handling a page fault, the memory subsystem first
looks up the page in the runner’s snapshot to obtain the
version and location information of the page and prevent
the runner from accessing memory outside its snapshot.
The memory subsystem makes a copy of the page if
it is on the local node to protect that version which

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, MONTH YEAR 6

Fig. 4: State transition of the runner and watcher

is potentially included in other runners’ snapshots, or
fetches the page from the remote node through the
network.

3.3 Parallelization and scheduling

We design DVM’s parallelization mechanism so that it
is easier to develop not only “embarrassingly parallel”
programs, but also more sophisticated applications, and
the programs can efficiently execute in a datacenter en-
vironment. The goal is to provide a scalable, concurrent
and easy-to-program task execution mechanism with
automatic dependence resolution. To achieve the goal,
we design a many-runner parallelization mechanism for
large-scale parallel computation, a scheduler to manage
the runners, and watchers to express and resolve task
dependences.

3.3.1 Runner

Runners are the abstraction of the program flows in a
DVM. A runner is created by its parent runner and termi-
nates after it exits or aborts. Fig. 4 summarizes the state
transitions in a runner’s life cycle. The parent runner
creates a new runner by executing the newr instruction.
A “created” runner moves to the “schedulable” state
after the parent runner exits and commits successfully.
The runner moves to the “running” state after being
scheduled and to the “finished” state after it exits or
aborts. The “watching” state applies only to a class of
special runners called “watchers” which are introduced
in Section 3.3.4.
Each runner uses a range of memory as its stack

range (stack for short), changes to which are discarded
after the runner exits, and multiple ranges of mem-
ory as its heap ranges. Because runners are started
by the scheduler, the scheduler needs to know cer-
tain control information about the runner, such as the
location of code and the runner’s stack and heap
ranges. DVM uses a Runner Control Block (RCB) to
store such control information. Fig. 5 shows the con-
tent of a runner’s RCB as well as the runner’s initial
stack. The RCB contains the stack base address sb and
stack size ss. fi specifies the address of the first in-
struction from which the runner starts to execute. The
heap ranges and heap range count fields stores the lo-
cations and the number of the heap ranges, respectively.
The watched ranges and watched range count fields are
used by the watcher mechanism discussed later.

Fig. 5: Runner i’s initial stack and RCB

Every runner resides in one RComp. Providing system
functions related to the management and operations of
runners, the RComp reduces the overhead of dispatching
and starting a runner. RComps interact with other parts
of the DVM system, and hide the complexity of the
system so that the runners can focus on expressing
the application logic on the abstraction provided by
DISA. Because RComps are reused, a large portion of
the runner startup overhead, such as loading modules
and setting up memory mapping, is incurred only once
in the lifetime of a DVM. To start a runner, the RComp
only needs to notify the memory subsystem to set up
the runner’s snapshot, and the supporting mechanisms,
such as the network connections, can be reused. Hence,
RComps make it efficient to start runners in a DVM.
Section 4 quantitatively studies the overhead of creating
and starting runners.

3.3.2 Scheduling

In a complex program, myriads of runners may be
created dynamically and exit the system after completing
their computation. RComps, on the other hand, represent
a semi-persistent facility to support runners’ execution.
Hence, there can be more runners than RComps in a
DVM, and the scheduler assigns runners to RComps, as
well as manages and coordinates the runners throughout
their life cycles. Specifically, the scheduler is responsible
for deciding when runners should start execution, as-
signing runners to RComps, preparing runners’ memory
snapshots, handling runners’ requests to create new
runners and managing the runners that the DVM does
not have resources (RComps) to execute currently. As
the child runners created by a parent runner are not
schedulable until the parent runner exits and commits
successfully, the scheduler also maintains the “prema-
ture” runners (the runners in the “created” state) in the
DVM. In addition, the scheduler implements the DVM’s
watcher mechanism (to be discussed in Section 3.3.4).
The scheduler of DVM is a distributed service con-

sisting of two parts: the scheduler master (the master)
and the scheduler agent (the agent). There is a single
master in a DVM, and there are many agents residing
in RComps. The master and the agents communicate
with each other through the datacenter network. The

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, MONTH YEAR 7

master makes high-level scheduling decisions, such as
dispatching runners for execution and assigning them
to RComps, and commands the agents to handle the
remaining runner management work, such as preparing
and updating runners’ snapshots. In the other direction,
an RComp can send scheduling-related requests to its
associated agent and the agent may ask the master for
coordination if it is needed.
The scheduler dispatches multiple runners from its

pool of schedulable runners according to the scheduling
policy, which takes locality along with other factors
into consideration, to an RComp when it is free (no
runner is running in it), creating a memory snapshot
for the runner and notifying the RComp to execute the
runner. A runner may create as many child runners
as the entire DVM (or datacenter) can handle. When
a runner requests to create new runners, the scheduler
constructs RCBs for the child runners, and extends the
parent runner’s memory snapshot so that the parent
can construct and access the child runners’ stacks. After
the parent exits and commits successfully, the scheduler
adds the child runners to the runner pool and marks
them as schedulable.
Although there is only one scheduler master in a

DVM, it has not been found that the single master
constrains the DVM’s scalability. As aforementioned, the
master is only responsible for high-level decisions and
occasional coordination and arbitration, and is, conse-
quently, very lightweight. Most of the work is handled in
parallel by the scheduler agents in the RComps. Hence,
the scheduler does not constitute a bottleneck in the
DVM in practice. Several large-scale systems, such as
MapReduce [11], GFS [27], and Dryad [12], follow a
similar single-master design pattern.
Together with the design of the scheduler, the design

of other components of DVM optimize the workflow to
ensure scalability. The snapshot-based memory model
of DISA enables massive runner-level parallelism by
invoking scheduling and coordination only when a run-
ner starts and commits. The ISA-level lightweight task
creation through the newr instruction enables programs
to create tasks at low cost. The two-version design
makes the metadata management fast and efficient so
that the memory subsystem can scale to handle many
snapshots. These designs ensure that DVM scales well
as the processor count and the data size increase. In
Section 4, we examine DVM’s scalability.

3.3.3 Many-runner parallel execution

The DVM should be able to accommodate a large num-
ber of runners and execute them in parallel to exploit the
aggregate computing capacity of many physical hosts.
This requires that the parallelization mechanism of DVM
provide scalable, concurrent and efficient task execution
and a flexible programming model to support many-
runner creation and execution.
DVM uses the shared-memory model to simplify the

program development. While a runner may write mul-

tiple memory ranges in the SR during its execution, the
runner may not want to apply some changes, such as
the temporary data, to the global memory space. DISA’s
memory subsystem enables programmers to control the
behaviors of memory ranges so that it can support com-
mon cases of memory usage. A runner mainly obtains
its input from its initial state comprising its stack ranges
constructed by its parent runner and heap ranges, and
can also read data from I/O channels during its execu-
tion. The runner’s output is written into its heap ranges
and I/O channels if it is needed. Upon completion,
a runner can specify whether it wants to commit or
abort its changes to the heap ranges. The changes to a
runner’s stack are always discarded upon completion of
the runner. We call this memory usage scheme the SIHO
(Stack-In-Heap-Out) model.
To support many-runner parallel execution on the ISA

level, the runner creation and dispatching mechanism
must be highly efficient. We design an instruction-level
runner creation mechanism. To create a new runner and
prepare it for execution, the program only needs to
specify the fi and the heap ranges for the new runner,
issue a “newr” instruction, and instantiate the stack.
We use an example to show how a runner creates

a new runner and how the DVM handles the runner
creation. When a runner, Ri, creates a new runner, Rj ,
Ri executes the instruction “newr” with addresses of
Rj ’s stack range, heap ranges and fi, as operands.
RComp(Ri), the RComp in which Ri runs, sends Rj ’s
control information specified by these operands to the
scheduler. As Ri may write the input data into Rj ’s
stack and a memory range can be used by Ri only
after RComp(Ri) has the range’s snapshot, the scheduler
creates a snapshot of Rj ’s stack and merges the snapshot
into Ri’s current one. After the memory range for Rj ’s
stack is ready, Ri writes the initial application data into
Rj ’s stack. The scheduler constructs and records Rj ’s
RCB along with the RCBs of the other runners created
by Ri.
When Ri exits and commits, the scheduler starts the

newly created runners by Ri, including Rj , according to
the recorded RCBs. Using Rj as an example, the runner
start-up procedure is as follows.

1) The scheduler chooses RComp(Rj) for Rj

2) The scheduler creates snapshot A of Rj ’s stack
range and heap ranges according to RCBj

3) The scheduler sends A and RCBj to RComp(Rj)
and commands RComp(Rj) to start Rj

4) RComp(Rj) sets Rj ’s local context according to
RCBj

5) RComp(Rj) starts to execute Rj from fi

3.3.4 Task dependency

Task dependency control is a key issue in concurrent
program execution. Related to this, synchronization is
often used to ensure the correct order of the opera-
tions, avoid race conditions, and, with execution or-
der constrained, guarantee that the concurrent execu-

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, MONTH YEAR 8

tion does not violate dependence relations. The existing
approaches have their limitations and constraints: the
synchronization mechanisms are not natural or efficient
to represent dependence [28], [29]; MapReduce employs
a restricted programming model and makes it difficult
to express sophisticated application logic [18], [19], [20];
DAG-based frameworks, such as Dryad [12], incur non-
trivial burden in programming, and automatic DAG
generation has only been implemented for certain high-
level languages [16].

As an important goal in the DVM design, the DISA
architecture should provide a task dependency represen-
tation and resolution mechanism with which task-level
dependence can be naturally expressed, concurrent tasks
can proceed without using synchronization mechanisms
such as locks [30], and sophisticated computation logic
can be processed effectively with dynamically scheduled
parallelism. Departing from existing solutions, we de-
sign a watcher mechanism in the DISA architecture to
provide a flexible way of declaring dependence and en-
able the construction of sophisticated application logic.
We refer the readers to [22] for the discussion of technical
details of the watcher mechanism.

3.4 I/O, signals and system services

For simplicity and flexibility, DISA adopts the memory
mapped I/O for DVM to operate on I/O channels by
accessing memory ranges in AR.

For example, we map the 1-byte memory range at
0x100000200 to the standard input (STDIN) and the
range at 0x100000208 to the standard output (STDOUT).
The runner can input from STDIN by reading the ad-
dress 0x100000200 and output to STDOUT by writing
to the address 0x100000208. The DVM translates the
memory accesses to these addresses to requests to the
RComp for I/O operations. For example, one runner
can read one byte from STDIN and write the value to
STDOUT by the following instructions.

mov:z 0x100000200:b, 0x300001000:b # read one byte from STDIN
mov:z 0x300001000:b, 0x100000208:b # write the byte to STDOUT

This design does not require additional instructions—
all DISA’s memory access instructions can also be used
for I/O. We can use this mechanism to support many
kinds and a large number of I/O channels which may
be distributed in many RComps.

In a DVM, many system events may occur. We design
a signal mechanism to enable runners to catch the in-
formation of events of interest in the system. Signals are
notifications of these events. The signal mechanism is
built on the watcher mechanism and the system services
(to be discussed below). The signals are represented as
changes to specific memory ranges, and runners (watch-
ers) can “watch” these memory ranges to get notified.

To support system functions, such as the I/O and
signal mechanisms, several distributed system services
cooperate with the scheduler and RComps in DVM. For

example, the I/O services on RComps manage I/O chan-
nels, and the “system state” service broadcasts “system
idle” signals. On top of the compact and efficient core
parts of the DVM as described, it is easy to implement
various system services to provide a rich set of functions.

3.5 Programming on DVM

Being Turing-complete, DISA instructions are capable
of expressing any computational logic. They can also
emulate the semantics of instructions in other ISAs. Ad-
ditionally, we design DISA as an extensible instruction
set so that more instructions can be added to DISA if
it is sufficiently beneficial to do so. More importantly,
the parallelization and dependency control mechanisms
along with the snapshot-based memory model provide
a convenient and efficient way to design concurrent
programs in the “lock-free” style [31].
We use an example to show how to naturally express

task dependence and avoid race conditions using watch-
ers. Using the newr instruction, we can easily create 2
sum_runner runners introduced in Section 2 to calculate
sums in parallel. In this example, we design a new
runner to add the 2 sums together. The new runner,
implemented as a watcher shown in the following code,
“watches” the output of the 2 sum_runner runners.

1 sum_watcher:

2 ;read the heap addresses of the depended runners and

3 ; the address to store the result from the stack, and stores
4 ; them in 0x300001000, 0x300001008, and 0x300001010 (omitted)
5 ;check whether the depended data are ready

6 br:e $0:uq, 8(0x300001000), create_self
7 br:e $0:uq, 8(0x300001008), create_self

8 ;sum the two integers as the sum_runner

9 add (0x300001000):uq, (0x300001008), (0x300001010)
10 mov:z $1:q, 8(0x300001010):q ; exit code

11 exit:c
12 create_self:

13 ;create sum_watcher with the same control information (omitted)
15 exit:c

The sum_watcher is activated when either of the
sum_runners commits and can check their exit codes to
determine whether both operands for the sum operation
are ready. The watcher creates itself again to continue
“watching” the data it depends on if either of the two
depended runners has not exited and committed. As
shown in this example, programmers only need to create
the watchers, and the dependences are automatically
resolved by the scheduler and watcher-related mecha-
nisms in the DVM.
Although we show the examples in DISA in this paper,

compilers can certainly be involved in the program-
ming in the DVM environment and transform programs
written in high-level languages into DISA code. With a
sufficiently sophisticated compiler, it is also possible to
port traditional software to DVM by recompiling them.
Providing a compiler and runtime support for a high-
level language on DVM is one piece of our ongoing
work.
Although one program instantiated as many runners

runs in a DVM at a specific time, many DVMs can run
concurrently in one cluster by isolating the computing

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, MONTH YEAR 9

(a) CCMR (b) TH-1/GZ

Fig. 6: The CCMR and TH-1/GZ supercomputer

resources to ARCs. In the CCMR research testbed (intro-
duced in Section 4), we set up multiple DVMs on the
same cluster and many users can develop and run their
programs in a time-sharing manner.

4 IMPLEMENTATION AND EVALUATION

We have implemented DVM and DISA on x86-64 hard-
ware. The implementation of the DISA and DVM com-
prises around 11,510 lines of C and assembly code. On
each host, the DVM runs in conjunction with a local
Linux OS as the base system which manages local hard-
ware resources including CPUs and local file systems.
We emulate DISA instructions on x86-64 machines in

our current implementation by using binary translation
to generate x86-64 code on the fly during the execution
of a DISA program. We have implemented and run DVM
on multiple platforms as listed below.

• The CCMR research testbed. As shown in Fig. 6(a),
the CCMR testbed is constructed for cloud com-
puting research. It is composed of 50 servers with
Intel Quad-Core Xeon processors. The servers are
connected by 10Gbps and 1Gbps networks. We use
16 nodes connected by the 10Gbps network for the
microbenchmarks and comparison experiments, and
up to 50 nodes for experiments with large datasets.

• The Amazon Elastic Compute Cloud (EC2). To ex-
amine DVM’s portability and scalability on public
IaaS platforms, we conduct part of the experiments
on Amazon EC2 instances of the m1.large type in
the us-east-1a zone.

• The TH-1/GZ supercomputer. To examine how
DVM performs in a high-performance computing
(HPC) environment, we conduct some experiments
on the TH-1/GZ supercomputer (Fig. 6(b)) which
follows the same architecture of Tianhe-1A [32]
ranked currently number 5 in the TOP500 list [33].

The implementations on EC2 and TH-1/GZ also show
the portability of DISA in virtualized, heterogeneous and
HPC environments. In addition to these 3 platforms, we
also implemented and evaluated DVM on an industrial
testbed [22]. Although the four platforms have quite dif-
ferent underlying hardware configurations and different
Linux kernels, it proves to be straightforward to port
DISA to all platforms by adding logic to match specific

kernel data structures. Application programs run un-
changed at all on four platforms without recompilation.

4.1 Workloads and methodology

We measure DVM’s mechanisms with microbenchmarks,
compare DVM’s performance with Hadoop and X10’s,
and inspect its scalability. We choose Hadoop and
X10 for comparison because they are representatives of
two mainstream approaches to datacenter computing
and their implementations are relatively mature and
optimized. Hadoop represents a class of MapReduce-
style programming frameworks such as Phoenix [19],
Mars [34], CGL-MapReduce [18] and MapReduce on-
line [35], and has been used extensively by many organi-
zations [36]. X10 represents a class of language-level so-
lutions, including Chapel [21] and Fortress [13], targeting
“non-uniform cluster computing” environments [14].
We use several workloads to evaluate DVM’s effi-

ciency and scalability. We first design the prime-checker
which uses 1000 runners to check the primality of
1,000,000 numbers. As the prime-checker is highly par-
allelizable, we use this arithmetic application to evaluate
the scalability of DVM as we add more compute nodes—
whether DVM can achieve near-linear speedup. To check
DVM’s performance on widely used and more complex
algorithms, we implement the k-means clustering algo-
rithm [37]. The k-means program iteratively clusters a
large number of 4-dimensional data points into 1000
groups. This reflects known problem configurations in
related work [38], [39], [40]. We run k-means on DVM
by scaling the number of compute nodes and the size of
datasets to evaluate DVM’s scalability, and compare to
Hadoop and X10. For more details of the implementation
of the prime-checker and k-means programs, we refer
the readers to [22]. Additionally, to examine how DVM
scales as the overall memory usage grows, we implement
and run teragen which produces the TearSort [41] input
datasets of various sizes.
For each technical solution in comparison, we apply

the highest performance setting among the standard con-
figurations. For example, X10 programs are pre-compiled
to native executable programs, and we write the x86-64-
based microbenchmark programs in comparison in the
assembly language. Note that the platforms have differ-
ent performance characteristics. To make the comparison
fair, we indicate the platform, use the same compute
nodes and network topology and configuration to run
comparative experiments, and repeat the experiments to
make sure results are consistent.

4.2 Microbenchmarks

We run microbenchmarks to measure the virtualization
overhead of DVM and compare the results with tradi-
tional virtual machine monitors. We also measure the
overhead and efficiency of creating runners, executing
runners and memory fetching. In addition, we measure
the performance gains from register-based optimization.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, MONTH YEAR 10

TABLE 2: Microbenchmark results

Benchmark Solution Time (second)
Native 7.13

Arithmetic and logic DVM 7.14
operation Xen 7.14

VMware 7.35
Native 110.60

Memory operation DVM 126.41
Xen 112.43
VMware 128.37

TABLE 3: Time for creating and executing a runner

Operation Operation step Time (ms)
Create snapshot 0.4
Create the runner 0.4

Create a runner Update RComp 0.5
Overall 1.3
Create snapshot 0.4
Initialize RComp 0.4

Execute a runner Update RComp 0.5
(empty runner) Invoke the runner 0.2

Commit snapshot 0.9
Overall 2.4

Virtualization overhead.We design microbenchmarks
to measure the overhead of CPU and memory virtual-
ization in DVM. To assess the overhead of CPU virtual-
ization, we measure the arithmetic and logic operation
performance by a microbenchmark program that exe-
cutes 234 add operations. Memory is another important
subsystem in the DVM, and we shall verify that the
distributed memory subsystem does not incur dramatic
overhead on one machine. We measure the memory
operation performance with another microbenchmark
program that writes 229 64-bit integers (4 GB in total)
to the memory for 256 times and then read them for 256
times.

We implement the microbenchmarks in x86-64 as-
sembly and DISA, and execute the programs in Xen,
VMware Player, native Linux, and a DVM on the same
physical host. To achieve the best performance, the x86-
64 assembly implementations heavily use registers. In
the DVM, the binary translator translates DISA instruc-
tions into x86-64 instructions during the execution.

Table 2 shows the results of the microbenchmarks.
From the results, we can see that the virtualization
overhead for arithmetic, logic and memory operation of
DVM is 0.1–15% over native execution on the physi-
cal host, which is comparable to traditional VMMs. In
particular, DVM exhibits even higher performance than
VMware on one physical host. For the memory mi-
crobenchmark, the time on DVM includes 7.47 seconds
for creating and committing the memory snapshot for
the runner.

Runner overhead. Task creation, scheduling, and ter-
mination are important and frequent operations in a task
execution engine. To examine DVM’s performance in
this aspect, we measure the overhead of creating and
executing a runner. We use one parent runner to create
1000 new empty runners and execute these runners. To

TABLE 4: Execution time of the reader runner

Configuration Time / CCMR Time / TH-1/GZ
(second) (second)

2 RComps
(Remote memory fetching) 51.05 36.21
1 RComp
(Local memory fetching) 6.85 5.63

measure the overhead accurately, we force the tasking
operation to be serial by conducting the experiment
using one RComp on one compute node so that we can
obtain the completion time of each operation.
Table 3 shows the overhead of creating and executing a

runner and the time used in each step. The results show
that the overhead of creating and executing a runner in
a DVM is only several milliseconds. The small overhead
enables DVM to handle thousands of runners efficiently,
and gives programmers the flexibility to use a large
number of runners as they want.
Memory fetching. We measure the efficiency of the

memory operations across multiple physical hosts by
a writer-reader microbenchmark. The writer-reader mi-
crobenchmark program consists of two runners—one,
the writer, writes 230 64-bit integers (8 GB in total) into
the SR, and the other one, the reader, reads these integers
from the SR. We run the writer-reader program on DVMs
that consist of one or two RComps residing on one
or two nodes respectively to check the performance of
memory fetching from the local node and the remote
node through the network.
Table 4 shows the results of the writer-reader mi-

crobenchmark. In the 1-RComp experiment, it takes 6.85
seconds on CCMR and 5.63 seconds on TH-1/GZ for
the reader to read the data. Although providing the ad-
vanced snapshot semantics and keeping two versions of
the pages as discussed in Section 3.2, DVM exhibits the
page fault handling throughputs of 3.1×105 and 3.7×105

page faults handled per second on CCMR and TH-1/GZ
respectively. The additional execution time in 2-RComp
experiments is spent on the data transmission through
the network. Applying copy-on-write may potentially
further improve the performance, which is one direction
of our future work.
Register-based optimization. To measure how much

performance improvement a program can achieve by
using RAMRs, we develop a loop microbenchmark since
loops are very common in programs. The loop mi-
crobenchmark sums 4 × 1010 64-bit integers in 4 × 1010

iterations. We implement the loop microbenchmark in
DISA with and without putting the iterator and accu-
mulator in RAMRs. We also implement and optimize
it in assembly using physical registers on Linux for
comparison.
Table 5 shows the execution time of loop on both DVM

and native Linux on the same compute node. From the
results, we can see that, after using RAMRs, loop uses
only 18.5% of the time of the other implementation not
using RAMRs on both CCMR and TH-1/GZ. The results

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, MONTH YEAR 11

TABLE 5: Execution time of loop

Time / Time /
Platform CCMR TH-1/GZ

(second) (second)
DVM, using RAMRs 31.83 27.30
DVM, without using RAMRs 171.81 147.34
Native Linux 31.79 27.28

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

1 node 16 nodes

E
x
e
c
u
ti
o
n
 t

im
e
 (

s
e
c
o
n
d
)

X10
Hadoop

DVM

(a) Execution time on 1 and 16
nodes

 0

 50

 100

 150

 200

 2 4 6 8 10 12 14 16

R
e
la

ti
v
e
 p

e
rf

o
rm

a
n
c
e

Number of nodes

DVM
Hadoop

X10

(b) Speedups as the number of
compute nodes grows

Fig. 7: Execution time and speedups of k-means

also show that loop on DVM using RAMRs produces
very close performance as the manually optimized one
using physical registers on Linux on both CCMR and
TH-1/GZ. This indicates that the binary translator can
generate high-quality native code and also verifies the
low virtualization overhead of DVM.

4.3 Performance comparison

We run the performance evaluation programs with the
same dataset on different numbers of compute nodes on
the CCMR testbed to compare DVM’s performance and
scalability with X10 and Hadoop’s.
Table 6 shows the time of prime-checker on Hadoop

and DVM. We scale the number of compute nodes to 16
physical hosts. The results show that both Hadoop and
DVM scale linearly as prime-check is easy to parallelize.
For simple ALU-intensive workloads, both DVM and
Hadoop are efficient, but DVM provides slightly higher
performance in spite of its advanced instruction set
features and memory model.
Fig. 7(a) presents the execution time of k-means on

Hadoop, X10 and DVM with 1 and 16 compute nodes.
The execution time on Hadoop and X10 is 11 times
more than that on DVM on 1 compute node. As shown
in this evaluation, DVM quickly exhibits superiority in
efficiency as the complexity of application grows. The
results on 16 compute nodes show that DVM is at least
13 times faster than Hadoop.
Fig. 7(a) presents that DVM exhibits tremendous speed

gains over Hadoop and X10, although Table 6 shows
that DVM only provides slightly better performance than

TABLE 6: Execution time of prime-checker on Hadoop
and DVM

Number of nodes 1 2 4 8 16
Hadoop (second) 16661 8352 4169 2090 1112
DVM (second) 15795 7885 3950 1975 986

Hadoop with simple ALU-intensive workloads. This
observation, in fact, illustrates the advantages of the
DVM technology. When the computation is composed
of one or two stages of easily parallelizable process-
ing, the MapReduce/Hadoop frameworks can already
accomplish algorithmically optimal performance. The
DVM can still provide slightly higher performance due
to its efficient instruction-level abstraction. Moreover, the
DVM quickly outperforms existing technologies when
the computation becomes more complex—i.e., contain-
ing iterations, more dependence, or non-trivial logic
flows, which are common cases in programs. The sys-
tem design of DVM aims to provide strong support
for general programs, and the speed gains of DVM
shown in Fig. 7(a) reflect DISA’s generality, efficiency
and scalability.
It may appear that the DVM’s memory-based data

processing is the main reason for its superiority in
performance. This is, in fact, an over-simplified view of
the technical design space. X10 also handles program
data through memory with PGAS (Partitioned Global
Address Space) [14]. As shown in Fig. 7(a), however, the
DVM is one order of magnitude faster than both Hadoop
and X10. In fact, disk I/O does not necessarily outweigh
other factors, such as network bandwidth and CPU
capacity, in a datacenter computing environment. In our
evaluation, we have implemented the same algorithm in
all the three technologies and applied salient optimiza-
tions for each of them—e.g., compiling X10 programs
to native x86-64 instructions—to ensure the workloads
are comparable with the three implementations. It is the
holistic design and the simple yet effective mechanisms
in the DVM that lead to the significant speedup over
existing technologies, and it is the ISA-level abstraction
that enables such a design and the mechanisms. As
the result, DVM performs at least as well as other
technologies on all workloads, and delivers much better
performance than others for complex programs.
Fig. 7(b) shows the speedups for three technologies as

we scale the number of compute nodes. All speedups
are calculated with respect to the X10 performance on
one compute node for each workload. The speedup of
the k-means computation on DVM is near-linear to the
number of compute nodes used, which highlights the
good scalability of the design and implementation of
DVM. We can also observe that the overhead of DVM is
small, taking into consideration the near-linear speedup
and the fact that the execution time on DVM in the 16-
node experiment is very short compared to the time on
Hadoop or X10.

4.4 Scalability

A scalable system may be required to scale with the
data size, the processor count, the user population, or a
combination of them. As user-scalability is not a goal of
DVM, our evaluation focuses on the scalability with the
data size and the number of compute nodes. The former
also measures the scalability of the memory subsystem.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, MONTH YEAR 12

 100

 1000

 10000

128 256 512 1024 2048
 30

 35

 40

 45

 50

 55

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

)

T
h

ro
u

g
h

p
u

t
(1

0
0

0
 p

o
in

ts
 p

e
r

s
e

c
o

n
d

)

Size of the dataset (x100,000 points)

Execution time
Throughput

(a) k-means

 10

 100

 1000

128 256 512 768
 0

 0.5

 1

 1.5

 2

 2.5

 3

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

)

T
h

ro
u

g
h

p
u

t
(G

B
 p

e
r

s
e

c
o

n
d

)

Size of total data generated with teragen (GB)

Execution time
Throughput

(b) teragen

Fig. 8: Scalability of DVM with the data

We run k-means on DVM with 50 compute nodes
on the CCMR testbed to evaluate DVM’s scalability
with the dataset size by increasing the dataset from
12,800,000 points to 204,800,000 points. Fig. 8(a) presents
the execution time and throughput which is calculated
by dividing the number of points by the execution time.
The result shows that, on the same number of compute
nodes, the execution time grows more slowly than lin-
ear growth with the dataset size while the throughput
increases. Hence, DVM scales well with the dataset size.

To examine how DVM performs when the total mem-
ory usage grows, we run teragen on 32 compute nodes
to generate data in the SR with increasing sizes. We
stress the memory subsystem by generating data of up
to 768GB which reaches the capacity of the 32 com-
pute nodes’ overall available physical memory. Fig. 8(b)
shows the execution time and throughput of teragen. The
throughput is approximately the same as the total data
generated increases from 128GB to 768GB, indicating
DVM’s memory subsystem scales well with increasing
memory usage. As one direction of future work, we will
explore how to unify the physical memory and disks and
design a “virtual memory” for DVM.

To evaluate DVM’s scalability and also examine
DVM’s performance in a public cloud, we run the
prime-checker on a DVM running on Amazon EC2 with
up to 256 virtual machine instances. Fig. 9(a) shows
the execution time and speedup with respect to the
performance on one instance. The results show that
the DVM scales very well to 256 compute nodes—
the speedup is near-linear as we increase the number
of instances. Our ability to perform experiments with
larger-scale and more sophisticated workloads is limited
by the concurrent instance cap stipulated by EC2. In
our future work, we will communicate with Amazon to
explore opportunities of larger-scale experiments. In the
mean time, the current result on 256 instances already
shows that, although prime-checker is a relatively easy-
to-parallelize program, the DISA architecture and the
DVM design easily scale to hundreds of compute nodes
without showing signs of slowdown or obvious system
bottlenecks. The experiment on EC2 also proves the
good portability of DVM in a virtualized environment,
and that the DVM can be used independently of or in
combination with traditional virtual machine monitors.

 10

 100

 1000

 10000

 100000

1 4 16 64 256
 1

 10

 100

 1000

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

)

S
p

e
e

d
u

p

Number of nodes

Time
Speedup

(a) prime-checker on EC2

Platform Execution Speedup

and # of time

nodes (second)

TH-1/GZ

160 480 12.99
80 822 7.58
40 1578 3.95
20 3128 1.99
10 6233 1.00
CCMR

50 4011 1.55

(b) k-means on TH-1/GZ

Fig. 9: Scalability with the number of compute nodes

4.5 Performance on the TH-1/GZ supercomputer

To examine the performance and scalability of DVM in
high-performance computing environments, we run k-
means on the TH-1/GZ supercomputer with 10 to 160
compute nodes. The input dataset consists of 204,800,000
points.
Fig. 9(b) shows the execution time and speedup of

k-means on TH-1/GZ. The speedup is calculated with
respect to the execution time on 10 compute nodes on
TH-1/GZ. For comparison, we also show the execution
time and speedup of k-means on CCMR with 50 com-
pute nodes in Fig. 9(b). The performance of the DVM on
50 compute nodes on CCMR is between the performance
of DVM on 10 and 20 nodes on TH-1/GZ. Although
these two platforms have different performance charac-
teristics, the results verify that DVM can deliver efficient
performance in different environments. From the results,
we can see that when we scale the compute nodes
from 10 to 160, the speedup of DVM also increases
to 12.99, which indicates that DVM scales well in the
supercomputing environment.
The experiments of DVM on TH-1/GZ show that, al-

though originally designed for datacenter environments,
DVM is portable to run on HPC platforms, conducting
computation efficiently and scaling well. These results
also suggest a potential of using cloud system software
for high-performance computing.

5 RELATED WORK

Many systems, programming frameworks, and lan-
guages are proposed and designed to exploit the com-
puting power of constellations of compute servers inside
today’s gigantic datacenters and help the programmers
design parallel programs easily and efficiently. Dean et
al. created the MapReduce programming model to pro-
cess and generate large data sets [11]. MapReduce relies
on a restricted programming model so that it can auto-
matically run the programs in parallel and provide fault-
tolerance while ensuring correctness. Dryad takes a more
general approach by allowing an application to spec-
ify an arbitrary “communication DAG (directed acyclic
graph)” [12]. While these frameworks are successful in
large data processing, they have their limitations. The
restricted programming model such as MapReduce is
not general enough to cover many important application

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, MONTH YEAR 13

domains and makes it difficult to design sophisticated
and latency-sensitive applications [17], [18], [19], [20].
Building the DAG for Dryad applications is a non-trivial
task to the programmers and automatic DAG gener-
ation is only seen implemented for certain high-level
languages. Different from the previous solutions, DVM
allows programmers to easily design general-purpose
applications running on a large number of compute
nodes by providing a more flexible yet highly scalable
programming model.
As another approach, new languages may help pro-

grammers write clearer, more compact and more expres-
sive programs on a cluster. High-level languages, such as
Sawzall and DryadLINQ, which are implemented on top
of programming frameworks (MapReduce and Dryad),
make the data-processing programs easier to design [15],
[16]. However, these languages also suffer from the
limitation of the underlying application frameworks.
Charles et al. design X10 to write parallel programs
in non-uniform cluster computing system, taking both
performance and productivity as its goals [14]. The
language-level approach gives the programmers more
precise control of the semantics of parallelization and
synchronization. DVM provides a lower-level abstrac-
tion by introducing a new ISA—DISA. On top of DISA,
we may implement various programming languages eas-
ily using DVM’s parallelization and concurrency control
mechanism along with the shared memory model.
Different from the frameworks and languages that

make the data communication transparent to program-
mers, message passing-based technologies [42] require
that the programmer handle the communication explic-
itly [43]. This can simplify the system design and im-
prove scalability, but often imposes extra burden on pro-
grammers. In contrast, the distributed shared memory
(DSM) keeps the data transmission among computers
transparent to programmers [44]. The DSM systems,
such as Ivy [26] and Treadmark [25], combine the ad-
vantages of “shared-memory systems” and “distributed-
memory systems” to provide a simple programming
model by hiding the communication mechanisms [44],
but incur a cost in maintaining memory coherence across
multiple computers. In order to reduce overhead and
enhance scalability, DVM provides snapshotted memory,
and the memory consistency model of DISA permits
concurrent accesses optimistically.
In contrast to the traditional ways of providing DSM

in middleware which provide a limited illusion of
shared memory, vNUMA uses virtualization technology
to build shared-memory multiprocessor (SMM) system
and provides a single system image (SSI) on top of
workstations connected through an Ethernet network
that provides “causally-ordered delivery” [10]. This also
differs from widely used virtualization systems, such
as Xen and VMware on the x86 ISA, which divide
the resources of a single physical host into multiple
virtual machines [4], [6]. Both vNUMA and the emerging
“inverse virtualization” [45] aim to merge a number

of compute nodes to be one larger machine. Different
from vNUMA, which is designed to be used on small
clusters [10], DVM virtualizes a large number of nodes
in large clusters at the ISA level and allows programs to
scale up to many logic flows.

6 CONCLUSION

Cloud computing is an emerging and important com-
puting paradigm backed by datacenters. However, de-
veloping applications running in datacenters is chal-
lenging. We design and implement DVM—a big virtual
machine that is general, efficient, scalable, portable and
easy-to-program—as an approach to developing a next-
generation computing technology for cloud computing.
Giving programmers an illusion of a “big machine”,
we design the DISA as the programming interface and
abstraction of DVM. We evaluate DVM on research and
public clusters, and show that DVM is one order of
magnitude faster than Hadoop and X10 for moderately
complex applications, and can scale to hundreds of
computers.

7 ACKNOWLEDGMENTS

This work was supported in part by the HKUST research
grants REC09/10.EG06, DAG11EG04G and SJTU grant
2011GZKF030902. We thank the Amazon AWS research
grant and the Guangzhou Supercomputing Center for
the support in the EC2 and TH-1/GZ based evaluation.

REFERENCES

[1] “Amazon Elastic Compute Cloud – EC2,” http://aws.amazon.com/
ec2/ , [8 Oct. 2012].

[2] “Rackspace,” http://www.rackspace.com/ , [8 Oct. 2012].
[3] “Windows Azure,” http://www.windowsazure.com/ , [8 Oct. 2012].
[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,

R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” in Proc. of SOSP’03, 2003, pp. 164–177.

[5] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “KVM: the
Linux virtual machine monitor,” in Proc. of the Linux Symposium,
vol. 1, 2007, pp. 225–230.

[6] C. A. Waldspurger, “Memory resource management in VMware
ESX server,” SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp. 181–194,
2002.

[7] R. Buyya, T. Cortes, and H. Jin, “Single system image,” Intl. Journal
of High Performance Computing Applications, vol. 15, no. 2, p. 124,
2001.

[8] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,
L. Youseff, and D. Zagorodnov, “The Eucalyptus open-source
cloud-computing system,” in Proc. of the 9th IEEE/ACM Intl.
Symposium on Cluster Computing and the Grid, 2009, pp. 124–131.

[9] L. Barroso and U. Hölzle, “The datacenter as a computer: An in-
troduction to the design of warehouse-scale machines,” Synthesis
Lectures on Computer Architecture, vol. 4, no. 1, pp. 1–108, 2009.

[10] M. Chapman and G. Heiser, “vNUMA: A virtual shared-memory
multiprocessor,” in Proc. of USENIX ATC’09, 2009.

[11] J. Dean and S. Ghemawat, “MapReduce: Simplified data process-
ing on large clusters.” in Proc. of OSDI’04, 2004, pp. 137–150.

[12] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: Dis-
tributed data-parallel programs from sequential building blocks,”
in Proc. of EuroSys’07, 2007, pp. 59–72.

[13] E. Allen, D. Chase, J. Hallett, V. Luchangco, J. Maessen, S. Ryu,
G. Steele Jr, S. Tobin-Hochstadt, J. Dias, C. Eastlund et al., “The
Fortress language specification,” https:// labs.oracle.com/projects/
plrg/fortress.pdf , 2008, [8 Oct. 2012].

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, MONTH YEAR 14

[14] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. Von Praun, and V. Sarkar, “X10: An object-oriented
approach to non-uniform cluster computing,” in ACM SIGPLAN
Notices, vol. 40, no. 10, 2005, pp. 519–538.

[15] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan, “Interpreting
the data: Parallel analysis with Sawzall,” Sci. Program., vol. 13,
no. 4, pp. 277–298, 2005.

[16] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. K. Gunda,
and J. Currey, “DryadLINQ: A system for general-purpose dis-
tributed data-parallel computing using a high-level language,” in
Proc. of OSDI’08, 2008, pp. 1–14.

[17] Z. Ma and L. Gu, “The limitation of MapReduce: A probing case
and a lightweight solution,” in Proc. of the 1st Intl. Conf. on Cloud
Computing, GRIDs, and Virtualization, 2010, pp. 68–73.

[18] J. Ekanayake, S. Pallickara, and G. Fox, “MapReduce for data
intensive scientific analysis,” in Fourth IEEE Intl. Conf. on eScience,
2008, pp. 277–284.

[19] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and
C. Kozyrakis, “Evaluating MapReduce for multi-core and mul-
tiprocessor systems,” in Proc. of the 13th Intl Symposium on High
Performance Computer Architecture, 2007, pp. 13–24.

[20] H.-C. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker, “Map-
Reduce-Merge: simplified relational data processing on large
clusters,” in Proc. of SIGMOD’07, 2007, pp. 1029–1040.

[21] B. Chamberlain, D. Callahan, and H. Zima, “Parallel programma-
bility and the Chapel language,” Intl. Journal of High Performance
Computing Applications, vol. 21, no. 3, p. 291, 2007.

[22] Z. Ma, Z. Sheng, L. Gu, L. Wen, and G. Zhang, “DVM: Towards
a datacenter-scale virtual machine,” in Proc. of the Eighth Annual
Intl. Conf. on Virtual Execution Environments, 2012, pp. 39–50.

[23] S. V. Adve and K. Gharachorloo, “Shared memory consistency
models: A tutorial,” IEEE Computer, vol. 29, pp. 66–76, 1996.

[24] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and
P. O’Neil, “A critique of ANSI SQL isolation levels,” in Proc. of
SIGMOD’95, 1995, pp. 1–10.

[25] P. Keleher, A. Cox, S. Dwarkadas, and W. Treadmarks, “Dis-
tributed shared memory on standard workstations and operating
systems,” in Proc. 1994 Winter USENIX Conf., 1994, pp. 115–131.

[26] K. Li and P. Hudak, “Memory coherence in shared virtual mem-
ory systems,” ACM Trans. Comput. Syst., vol. 7, no. 4, pp. 321–359,
1989.

[27] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file
system,” in Proc. of SOSP’03, 2003, pp. 29–43.

[28] C. Tseng, “Compiler optimizations for eliminating barrier syn-
chronization,” in ACM SIGPLAN Notices, vol. 30, no. 8, 1995, pp.
144–155.

[29] D.-K. Chen, H.-M. Su, and P.-C. Yew, “The impact of synchro-
nization and granularity on parallel systems,” in Proc. of the 17th
Annual Intl. Symposium on Computer Architecture, 1990, pp. 239–
248.

[30] K. Birman, G. Chockler, and R. van Renesse, “Toward a cloud
computing research agenda,” SIGACT News, vol. 40, no. 2, pp.
68–80, 2009.

[31] M. Herlihy and J. E. B. Moss, “Transactional memory: architec-
tural support for lock-free data structures,” in Proceedings of the
20th annual international symposium on computer architecture, 1993,
pp. 289–300.

[32] X. Yang, X. Liao, K. Lu, Q. Hu, J. Song, and J. Su, “The TianHe-1A
supercomputer: its hardware and software,” Journal of Computer
Science and Technology, vol. 26, no. 3, pp. 344–351, 2011.

[33] TOP500 Supercomputer Sites, “TOP500 List,” http://www.top500.
org/list/2012/06/100, [8 Oct. 2012].

[34] B. He, W. Fang, Q. Luo, N. Govindaraju, and T. Wang, “Mars:
a MapReduce framework on graphics processors,” in Proc. of
the 17th Intl. conference on parallel architectures and compilation
techniques, 2008, pp. 260–269.

[35] T. Condie, N. Conway, P. Alvaro, J. Hellerstein, K. Elmeleegy, and
R. Sears, “MapReduce online,” in Proc. of the 7th USENIX conf. on
networked systems design and implementation, 2010, pp. 21–21.

[36] Apache Hadoop, “PoweredBy,” http://wiki.apache.org/hadoop/
PoweredBy, [8 Oct. 2012].

[37] J. MacQueen, “Some methods for classification and analysis of
multivariate observations,” in Proc. of the Fifth Berkeley Symposium
on Mathematical Statistics and Probability, vol. 1, 1967, pp. 281–297.

[38] H. Jégou, M. Douze, and C. Schmid, “Improving bag-of-features

for large scale image search,” Intl. Journal of Computer Vision,
vol. 87, no. 3, pp. 316–336, 2010.

[39] D. Lee, S. Baek, and K. Sung, “Modified k-means algorithm for
vector quantizer design,” IEEE Signal Processing Letters, vol. 4,
no. 1, pp. 2–4, 1997.

[40] R. Zhang and A. Rudnicky, “A large scale clustering scheme for
kernel k-means,” in Proc. of the Sixteenth Intl. Conf. on Pattern
Recognition, 2002, pp. 289–292.

[41] “Sort Benchmark,” http://sortbenchmark.org/ , [8 Oct. 2012].
[42] Message Passing Interface Forum, “MPI: A message-passing

interface standard,” http://www.mpi-forum.org/docs/mpi-2.2/
mpi22-report.pdf , 2009, [8 Oct. 2012].

[43] H. Lu, S. Dwarkadas, A. Cox, and W. Zwaenepoel, “Message
passing versus distributed shared memory on networks of work-
stations,” in Proc. of the IEEE/ACM Supercomputing 95 Conf., 1995,
p. 37.

[44] B. Nitzberg and V. Lo, “Distributed shared memory: A survey of
issues and algorithms,” Computer, vol. 24, no. 8, pp. 52–60, 1991.

[45] B. Hedlund, “Inverse virtualization for Internet
scale applications,” http://bradhedlund.com/2011/03/16/
inverse-virtualization-for-internet-scale-applications/ , [8 Oct. 2012].

Zhiqiang Ma is currently a postgraduate student
working towards the Ph.D. degree in computer
science and engineering in the Department of
Computer Science and Engineering at the Hong
Kong University of Science and Technology
(HKUST). He received the B.S. degree from
Fudan University in 2009. His current research
focuses on large-scale distributed computing,
data processing and storage systems for cloud
computing.

Zhonghua Sheng received the M.Phil. degree
from the Hong Kong University of Science and
Technology (HKUST) in 2012. He received the
the B.S. degree from Harbin Engineering Uni-
versity and the M.S. degree from Harbin Institute
of Technology. He conducted research on large-
scale parallel computing and storage systems
for cloud computing during his study at HKUST.

Lin Gu is an Assistant Professor in the De-
partment of Computer Science and Engineering
at the Hong Kong University of Science and
Technology (HKUST). He received B.S. from
Fudan University, M.S. from Peking University,
and Ph.D. in Computer Science from the Uni-
versity of Virginia. His research interest includes
cloud computing, operating systems, computer
networks and wireless sensor networks.

