
DVM: Towards a Datacenter-Scale
Virtual Machine

Zhiqiang Ma‡, Zhonghua Sheng‡, Lin Gu‡,
Liufei Wen† and Gong Zhang†

‡ Department of Computer Science and Engineering,
The Hong Kong University of Science and Technology, Hong Kong

† Huawei Technologies, Shenzhen, China

Eighth Annual International Conference on
Virtual Execution Environments (VEE 2012)

London, UK, March 3 - 4 2012

Virtualization technology

32

Virtualization technology

33

Virtualization technology

34

app

app

Virtualization technology

35

VM 3

VM 2

VM 4

VM 1

Virtualization technology

36

VM 3

VM 2

VM 4

VM 1

Virtualization technology

37

app

app

app

app

app

app

VM 3

VM 2

VM 4

VM 1

Virtualization technology
• Package resources
• Enforce isolation

38

app

app

app

app

app

app

VM 3

VM 2

VM 4

VM 1

Virtualization technology
• Package resources
• Enforce isolation

39

app

app

app

app

• A fundamental component
in cloud technology replying
in datacenters

app

app

Computation in datacenters

40

VM 1

app

Computation in datacenters

41

VM 1

app

3.2 ~ 12.8 TB data with 2,000 machines [Dean 2004]

Computation in datacenters

42

VM 1

app

…

Computation in datacenters

43

…

VM 1

app

VM k

app

…

VM 2

app

Computation in datacenters

44

…

VM 1

app

VM k

app

…

VM 2

app Programmers handle the complexity of
distributed communication, processing, and data

marshalling

DVM: big virtual machine

DVM: DISA Virtual Machine
DISA: Datacenter Instruction Set Architecture 45

…

VM 1

app

VM k

app

VM 2

app

DVM: big virtual machine

DVM: DISA Virtual Machine
DISA: Datacenter Instruction Set Architecture 46

…

VM 1

app

VM k

app

VM 2

app DVM

DVM: big virtual machine

DVM: DISA Virtual Machine
DISA: Datacenter Instruction Set Architecture 47

…

VM 1

app

VM k

app

VM 2

app DVM

DVM: towards a datacenter-scale
virtual machine

DVM: big virtual machine
–General
–Scalable (1000s of machines)

–Efficient
–Easy-to-program
–Portable

48

“The datacenter as a computer” [Barroso 2009]

Why not other approaches?

49

 MapReduce (Hadoop) - application frameworks
 X10 - parallel programming languages
 MPI - System calls/APIs

 Increased complexity
 Partition program state (MapReduce)
 Programmer specified synchronization (X10)
 Semantic gaps (MPI)

 Decreased performance
 10X improvement is possible (k-means)

 Diminished generality
 Specific control flow and dependence relation (MapReduce)

Talk outline

• Motivation
• System design
• Evaluation

50

DVM architecture

51

DVM architecture

52

Physical host 1 Physical host 2 Physical host 3

DVM architecture

53

Physical host 1 Physical host 2 Physical host 3

Available
Resource
Container

(ARC)

DVM architecture

54

Physical host 1 Physical host 2 Physical host 3

DVM 1

Available
Resource
Container

(ARC)

DVM architecture

55

Physical host 1 Physical host 2 Physical host 3

DVM 1 DVM2

Available
Resource
Container

(ARC)

DVM architecture

56

Physical host 1 Physical host 2 Physical host 3

DVM 1 DVM2

Available
Resource
Container

(ARC)

Runner

DVM architecture

57

Physical host 1 Physical host 2 Physical host 3

DVM 1 DVM2

Available
Resource
Container

(ARC)

Runner
Compartment

(RComp)

Runner

DVM architecture

58

Physical host 1 Physical host 2 Physical host 3

DVM 1 DVM2

Available
Resource
Container

(ARC)

Runner
Compartment

(RComp)

Runner

DVM architecture

59

Physical host 1 Physical host 2 Physical host 3

DVM 1 DVM2

Scheduler Scheduler

Available
Resource
Container

(ARC)

Runner
Compartment

(RComp)

Runner

Runners – an example

60

Calculate the sums of
20,480 integers

Runners – an example

61

Calculate the sums of
20,480 integers

Each task sums two integers

…

Runners – an example

62

Calculate the sums of
20,480 integers

Each task sums two integers

…

Runners – an example

63

Calculate the sums of
20,480 integers

Each task sums two integers

…

…

Runners – an example

64

Calculate the sums of
20,480 integers

Each task sums two integers

…

…
Sums results from

two runners

Runners – an example

65

Calculate the sums of
20,480 integers

Each task sums two integers

…

…

…

…

Sums results from
two runners

Runners – an example

66

Calculate the sums of
20,480 integers

Each task sums two integers

…

Scheduler

RComp RComp

Runners – an example

67

RComp

Calculate the sums of
20,480 integers

Each task sums two integers DVM

…

RComp RComp

…

Scheduler

RComp RComp

Runners – an example

68

RComp

Calculate the sums of
20,480 integers

Each task sums two integers DVM

RComp RComp

…

Interface between DVM and programs
• Traditional ISAs

• Clear interface between hardware and
software

• Traditional ISAs for DVM?
• vNUMA: only for small cluster (8 nodes);

unable to fully support Itanium’s memory
semantics (mf)

• Not scalable to a datacenter

69

Datacenter Instruction Set Architecture

Goals of DISA:
• Efficiently express logic
• Efficient on common hardware
• Easy to implement and port
• Scalable parallelization mechanism and memory

model

70

DISA retains the generality and efficiency of
traditional ISAs, and enables the system to scale
to many machines

DISA - instructions

71

add (0x100001000):q, 8(0x100001000), 0x100000000020

DISA - instructions

72

add (0x100001000):q, 8(0x100001000), 0x100000000020

opcode

DISA - instructions

73

add (0x100001000):q, 8(0x100001000), 0x100000000020

opcode operands

DISA - instructions

74

add (0x100001000):q, 8(0x100001000), 0x100000000020

opcode operands

operand attributes:
64-bit integer

DISA - instructions

75

add (0x100001000):q, 8(0x100001000), 0x100000000020

opcode operands

operand attributes:
64-bit integer

0x100000000010

800 (0x100001000)

0x100001000

0x100000000010

DISA - instructions

76

add (0x100001000):q, 8(0x100001000), 0x100000000020

opcode operands

operand attributes:
64-bit integer

0x100000000010

800

210
(0x100001000)

8(0x100001000)

0x100001000

0x100000000010

DISA - instructions

77

add (0x100001000):q, 8(0x100001000), 0x100000000020

opcode operands

operand attributes:
64-bit integer

0x100000000010

800

210
+

(0x100001000)

8(0x100001000)

0x100001000

0x100000000010

DISA - instructions

78

add (0x100001000):q, 8(0x100001000), 0x100000000020

opcode operands

operand attributes:
64-bit integer

0x100000000010

800

210

1010

+
(0x100001000)

8(0x100001000)

0x100000000020

0x100001000

0x100000000010

DISA - instructions

79

add (0x100001000):q, 8(0x100001000), 0x100000000020

opcode operands

operand attributes:
64-bit integer

0x100000000010

800

210

1010

+
(0x100001000)

8(0x100001000)

0x100000000020

0x100001000

0x100000000010

• Unified operand address based on
memory

• Orthogonality in instruction design
• Selected group of frequently used

instructions for efficiency
• Support for massive, flexible and

efficient parallel processing

Instruction Operands Effect

mov D1, M1 Move [D1] to M1

add D1, D2, M1 Add [D1] and [D2]; store the result in M1

sub D1, D2, M1 Subtract [D2] from [D1]; store the result in M1

mul D1, D2, M1 Multiply [D1] and [D2]; store the result in M1

div D1, D2, M1 Divide [D1] by [D2]; store the result in M1

and D1, D2, M1 Store the bitwise AND of [D1] and [D2] in M1

or D1, D2, M1 Store the bitwise inclusive OR of [D1] and [D2] in M1

xor D1, D2, M1 Store the bitwise exclusive OR of [D1] and [D2] in M1

br D1, D2, M1 Compare [D1] and [D2]; jump to M1 depending on the comparing result

bl M1, M2 Branch and link (procedure call)

newr M1, M2, M3, M4 Create a new runner

exit Exit and commit or abort

DISA - instructions

80

Selected group of frequently used instructions

Instruction Operands Effect

mov D1, M1 Move [D1] to M1

add D1, D2, M1 Add [D1] and [D2]; store the result in M1

sub D1, D2, M1 Subtract [D2] from [D1]; store the result in M1

mul D1, D2, M1 Multiply [D1] and [D2]; store the result in M1

div D1, D2, M1 Divide [D1] by [D2]; store the result in M1

and D1, D2, M1 Store the bitwise AND of [D1] and [D2] in M1

or D1, D2, M1 Store the bitwise inclusive OR of [D1] and [D2] in M1

xor D1, D2, M1 Store the bitwise exclusive OR of [D1] and [D2] in M1

br D1, D2, M1 Compare [D1] and [D2]; jump to M1 depending on the comparing result

bl M1, M2 Branch and link (procedure call)

newr M1, M2, M3, M4 Create a new runner

exit Exit and commit or abort

DISA - instructions

81

Selected group of frequently used instructions

Instructions for massive, flexible
and efficient parallel processing

Store runner state
Programming on a big single computer
• Large, flat, and unified memory space

– Shared region (SR) and private region (PR) ~64 TBs and 4 GBs

Challenge: thousands of runners access SR
concurrently
• A snapshot on interested ranges for a runner

– Updates affect associated snapshot => concurrent accesses
– Most accesses handled at native speed
– Coordination only needed for committing memory ranges

82

Manage runners

83

Parent runner creates
10,240 child runners

Share data

Manage runners

84

Parent runner creates
10,240 child runners

Share data

Commit 10,240 times?

Manage runners

85

Parent runner creates
10,240 child runners

Share data

Commit 10,240 times?

Manage runners

86

created
parent
creates

Parent runner creates
10,240 child runners

Share data

Commit 10,240 times?

created

parent
creates

…

Manage runners

87

created

schedulable

parent
creates

parent
commits

Parent runner creates
10,240 child runners

Share data

Commit 10,240 times?

created

parent
creates

…

Manage runners

88

created

schedulable

parent
creates

parent
commits

Parent runner creates
10,240 child runners

Share data

Commit 10,240 times?

created

parent
creates

…

Manage runners

89

created

schedulable

parent
creates

parent
commits

Parent runner creates
10,240 child runners

Share data

Commit 10,240 times?

Only 1 commit

created

parent
creates

…

Manage runners

90

created

schedulable running finished
parent
creates

parent
commits

schedule exit or
abort

Parent runner creates
10,240 child runners

Share data

Commit 10,240 times?

Only 1 commit

created

parent
creates

…

Many-runner parallel execution

91

Scheduler

RComp RComp

Many-runner parallel execution

92

RComp

DVM

RComp

…

Scheduler

RComp RComp

Many-runner parallel execution

93

RComp

DVM

RComp

…

newr stack, heap, watched, fi
newr stack, heap, watched, fi
newr stack, heap, watched, fi
...
newr stack, heap, watched, fi
exit:c

Scheduler

RComp RComp

Many-runner parallel execution

94

RComp

DVM

RComp

…

newr stack, heap, watched, fi
newr stack, heap, watched, fi
newr stack, heap, watched, fi
...
newr stack, heap, watched, fi
exit:c

Scheduler

RComp RComp

Many-runner parallel execution

95

RComp

DVM

RComp

…

newr stack, heap, watched, fi
newr stack, heap, watched, fi
newr stack, heap, watched, fi
...
newr stack, heap, watched, fi
exit:c

Scheduler

RComp RComp

Many-runner parallel execution

96

RComp

DVM

RComp

…

newr stack, heap, watched, fi
newr stack, heap, watched, fi
newr stack, heap, watched, fi
...
newr stack, heap, watched, fi
exit:c

Scheduler

RComp RComp

Many-runner parallel execution

97

RComp

… DVM

RComp

…

newr stack, heap, watched, fi
newr stack, heap, watched, fi
newr stack, heap, watched, fi
...
newr stack, heap, watched, fi
exit:c

Scheduler

RComp RComp

Many-runner parallel execution

98

RComp

… DVM

Create 1000s of new
runners easily and efficiently

RComp

…

newr stack, heap, watched, fi
newr stack, heap, watched, fi
newr stack, heap, watched, fi
...
newr stack, heap, watched, fi
exit:c

Scheduler

RComp RComp

Many-runner parallel execution

99

RComp

… DVM

Create 1000s of new
runners easily and efficiently

RComp

…

Scheduler

RComp RComp

Many-runner parallel execution

100

RComp

DVM

RComp

…

Task dependency
• Task dependency control is a key issue in

concurrent program execution

• X10 – synchronization mechanisms
– Need to synchronize concurrent execution

• MapReduce – Restricted programming model
• Dryad – DAG-based

– Non-trivial burden in programming
– Automatic DAG generation only implemented for certain

high- level languages

101

Watcher

102

Watcher

103

created schedulable running finished
newr

parent
commits schedule exit or

abort

Watcher

104

created schedulable running finished
newr schedule exit or

abort

Watcher

105

created schedulable running finished
newr schedule exit or

abort

watching parent
commits

Watcher

106

created schedulable running finished
newr schedule exit or

abort

watching parent
commits

memory
change

Watcher

107

created schedulable running finished
newr schedule exit or

abort

watching parent
commits

memory
change

Watcher
Watcher – explicitly express data dependence

– Data dependence: “watched ranges” e.g. [0x1000, 0x1010)
– Flexible way to declare dependence
– Automatic dependence resolution

108

created schedulable running finished
newr schedule exit or

abort

watching parent
commits

memory
change

Watcher example

109

…

Initial value in 0x1000 and 0x1008 is 0

Watcher example

110

…

Initial value in 0x1000 and 0x1008 is 0

Watcher example

111

…

…

Initial value in 0x1000 and 0x1008 is 0

Watcher example

112

…

…

…

…

Initial value in 0x1000 and 0x1008 is 0

Watcher example

113

…

…

…

…

Initial value in 0x1000 and 0x1008 is 0

Watcher example

114 Initial value in 0x1000 and 0x1008 is 0

Watcher example

115

watch shared
memory range
[0x1000, 0x1010)

Initial value in 0x1000 and 0x1008 is 0

store result in 0x1000

Watcher example

116

watch shared
memory range
[0x1000, 0x1010)

Initial value in 0x1000 and 0x1008 is 0

store result in 0x1000

Watcher example

117

watch shared
memory range
[0x1000, 0x1010)

store result in 0x1008

Initial value in 0x1000 and 0x1008 is 0

store result in 0x1000

Watcher example

118

watch shared
memory range
[0x1000, 0x1010)

store result in 0x1008

if (*((long*)0x1000) != 0 &&
 ((long)0x1008) != 0) {
 // add the sum produced by two
 // runners together
} else {
 // create itself and keep watching

Initial value in 0x1000 and 0x1008 is 0

Talk outline

• Motivation
• System design
• Evaluation

119

Implementation and evaluation
• Emulate DISA on x86-64

– Dynamic binary translation

• Implement DVM
– CCMR – a research testbed
– An industrial testbed
– Amazon Elastic Compute Cloud (EC2)

• Microbenchmarks, prime-checker and
k-means clustering
• Compare with Xen, VMware, Hadoop and X10

120

Goals of DVM:
General, scalable, efficient, portable, easy-to-program

Implementation and evaluation
• Emulate DISA on x86-64

– Dynamic binary translation

• Implement DVM
– CCMR – a research testbed
– An industrial testbed
– Amazon Elastic Compute Cloud (EC2)

• Microbenchmarks, prime-checker and
k-means clustering
• Compare with Xen, VMware, Hadoop and X10

121

Goals of DVM:
General, scalable, efficient, portable, easy-to-program

Performance comparison – k-means on 1 node

122

Execution time of k-means on 1 working node
R: research testbed. I: industrial testbed.

Performance comparison – k-means on 1 node

123

Execution time of k-means on 1 working node
R: research testbed. I: industrial testbed.

DVM is
12X faster

Performance comparison – k-means on 16 nodes

124

Execution time of k-means on 16 working nodes

General, scalable, efficient, portable, easy-to-program

Performance comparison – k-means on 16 nodes

125

Execution time of k-means on 16 working nodes

General, scalable, efficient, portable, easy-to-program

DVM is
13X faster

Performance comparison – k-means on 16 nodes

126

Execution time of k-means on 16 working nodes

General, scalable, efficient, portable, easy-to-program

DVM is
13X faster

Performance comparison – k-means on 16 nodes

127

Execution time of k-means on 16 working nodes

General, scalable, efficient, portable, easy-to-program

DVM is
13X faster

Performance comparison – relative performance of k-means

128

Relative performance of k-means as the number of working nodes grows

General, scalable, efficient, portable, easy-to-program

Performance comparison – relative performance of k-means

129

Relative performance of k-means as the number of working nodes grows

General, scalable, efficient, portable, easy-to-program

Hadoop
X10

Performance comparison – relative performance of k-means

130

Relative performance of k-means as the number of working nodes grows

General, scalable, efficient, portable, easy-to-program

DVM

Hadoop
X10

Performance comparison – relative performance of k-means

131

Relative performance of k-means as the number of working nodes grows

General, scalable, efficient, portable, easy-to-program

DVM

Hadoop
X10

Scalability with data size

132

Execution time and throughput of k-means as the size of dataset grows

General, scalable, efficient, portable, easy-to-program

Scalability with data size

133

Execution time and throughput of k-means as the size of dataset grows

General, scalable, efficient, portable, easy-to-program

Pheonix
[Ranger 2007]
[Yoo 2009]

Scalability with data size

134

Execution time and throughput of k-means as the size of dataset grows

General, scalable, efficient, portable, easy-to-program

Pheonix
[Ranger 2007]
[Yoo 2009]

CGI-MapReduce
[Ekanayake 2008]

Scalability with data size

135

Execution time and throughput of k-means as the size of dataset grows

General, scalable, efficient, portable, easy-to-program

Pheonix
[Ranger 2007]
[Yoo 2009]

CGI-MapReduce
[Ekanayake 2008]

1/2 day on
Hadoop/X10

Scalability with data size

136

Execution time and throughput of k-means as the size of dataset grows

General, scalable, efficient, portable, easy-to-program

Scalability with data size

137

Execution time and throughput of k-means as the size of dataset grows

General, scalable, efficient, portable, easy-to-program

Increased
throughput

Scalability with data size

138

Execution time and throughput of k-means as the size of dataset grows

General, scalable, efficient, portable, easy-to-program

Increased
throughput

Conclusion and future work
• DVM is an approach to unifying computation in a

datacenter
– Illusion of a “big machine” – “The datacenter as a

computer”
– DISA as the programming interface and abstraction of DVM
– One order of magnitude faster than Hadoop and X10
– Scales to many compute nodes

• Future work
– Compiler for programmers, DVM across datacenters,

etc.

139

Thank you!

Reference
• [Dean 2004] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large

clusters. In the 6th Conference on Symposium on Operating Systems Design &
Implementation, volume 6, pages 137–150, 2004.

• [Barroso 2009] L. Barroso and U. Hӧlzle. The datacenter as a computer: An introduction
to the design of warehouse-scale machines. Synthesis Lectures on Computer
Architecture, 4(1):1–108, 2009.

• [Ranger 2007] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis.
Evaluating MapReduce for multi-core and multiprocessor systems. In Proc. of the 2007
IEEE 13th Intl Symposium on High Performance Computer Architecture, pages 13–24,
2007.

• [Yoo 2009] Richard M. Yoo, Anthony Romano, and Christos Kozyrakis. Phoenix Rebirth:
Scalable MapReduce on a Large-Scale Shared-Memory System", In Proceedings of the
2009 IEEE International Symposium on Workload Characterization (IISWC), pp. 198-207,
2009.

• [Ekanayake 2008] J. Ekanayake, S. Pallickara, and G. Fox. MapReduce for data intensive
scientific analysis. In Fourth IEEE International Conference on eScience, pages 277–284,
2008.

141

Backup slides

Scalability with number of nodes

143

Speedup and execution time of prime-checker
as the number of working nodes grows

General, scalable, efficient, portable, easy-to-program

Scalability with number of nodes

144

Speedup and execution time of prime-checker
as the number of working nodes grows

General, scalable, efficient, portable, easy-to-program

Sustained speedup
up to 256 nodes

Scalability with number of nodes

145

Speedup and execution time of prime-checker
as the number of working nodes grows

General, scalable, efficient, portable, easy-to-program

Sustained speedup
up to 256 nodes

	DVM: Towards a Datacenter-Scale Virtual Machine
	Virtualization technology
	Virtualization technology
	Virtualization technology
	Virtualization technology
	Virtualization technology
	Virtualization technology
	Virtualization technology
	Virtualization technology
	Computation in datacenters
	Computation in datacenters
	Computation in datacenters
	Computation in datacenters
	Computation in datacenters
	DVM: big virtual machine
	DVM: big virtual machine
	DVM: big virtual machine
	DVM: towards a datacenter-scale�virtual machine
	Why not other approaches?
	Talk outline
	DVM architecture
	DVM architecture
	DVM architecture
	DVM architecture
	DVM architecture
	DVM architecture
	DVM architecture
	DVM architecture
	DVM architecture
	Runners – an example
	Runners – an example
	Runners – an example
	Runners – an example
	Runners – an example
	Runners – an example
	Runners – an example
	Runners – an example
	Runners – an example
	Interface between DVM and programs
	Datacenter Instruction Set Architecture
	DISA - instructions
	DISA - instructions
	DISA - instructions
	DISA - instructions
	DISA - instructions
	DISA - instructions
	DISA - instructions
	DISA - instructions
	DISA - instructions
	DISA - instructions
	DISA - instructions
	Store runner state
	Manage runners
	Manage runners
	Manage runners
	Manage runners
	Manage runners
	Manage runners
	Manage runners
	Manage runners
	Many-runner parallel execution
	Many-runner parallel execution
	Many-runner parallel execution
	Many-runner parallel execution
	Many-runner parallel execution
	Many-runner parallel execution
	Many-runner parallel execution
	Many-runner parallel execution
	Many-runner parallel execution
	Many-runner parallel execution
	Task dependency
	Watcher
	Watcher
	Watcher
	Watcher
	Watcher
	Watcher
	Watcher
	Watcher example
	Watcher example
	Watcher example
	Watcher example
	Watcher example
	Watcher example
	Watcher example
	Watcher example
	Watcher example
	Watcher example
	Talk outline
	Implementation and evaluation
	Implementation and evaluation
	Performance comparison – k-means on 1 node
	Performance comparison – k-means on 1 node
	Performance comparison – k-means on 16 nodes
	Performance comparison – k-means on 16 nodes
	Performance comparison – k-means on 16 nodes
	Performance comparison – k-means on 16 nodes
	Performance comparison – relative performance of k-means
	Performance comparison – relative performance of k-means
	Performance comparison – relative performance of k-means
	Performance comparison – relative performance of k-means
	Scalability with data size
	Scalability with data size
	Scalability with data size
	Scalability with data size
	Scalability with data size
	Scalability with data size
	Scalability with data size
	Conclusion and future work
	Thank you!
	Reference
	Backup slides
	Scalability with number of nodes
	Scalability with number of nodes
	Scalability with number of nodes

