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• A fundamental component 
in cloud technology replying 
in datacenters 

app 

app 



Computation in datacenters 

40 

VM 1 

app 



Computation in datacenters 

41 

VM 1 

app 

3.2 ~ 12.8 TB data with 2,000 machines [Dean 2004] 



Computation in datacenters 

42 

VM 1 

app 

… 



Computation in datacenters 

43 

… 

VM 1 

app 

VM k 

app 

… 

VM 2 

app 



Computation in datacenters 

44 

… 

VM 1 

app 

VM k 

app 

… 

VM 2 

app Programmers handle the complexity of 
distributed communication, processing, and data 

marshalling 
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DVM: towards a datacenter-scale 
virtual machine 

DVM: big virtual machine 
–General 
–Scalable (1000s of machines) 

–Efficient 
–Easy-to-program 
–Portable 
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“The datacenter as a computer” [Barroso 2009] 



Why not other approaches? 
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 MapReduce (Hadoop) - application frameworks 
 X10 - parallel programming languages 
 MPI  - System calls/APIs 

 

 Increased complexity 
 Partition program state (MapReduce) 
 Programmer specified synchronization (X10) 
 Semantic gaps (MPI) 

 Decreased performance 
 10X improvement is possible (k-means) 

 Diminished generality 
 Specific control flow and dependence relation (MapReduce) 



Talk outline 

• Motivation 
• System design 
• Evaluation 
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Interface between DVM and programs 
• Traditional ISAs  

• Clear interface between hardware and 
software 

• Traditional ISAs for DVM? 
• vNUMA: only for small cluster (8 nodes); 

unable to fully support Itanium’s memory 
semantics (mf)  

• Not scalable to a datacenter 
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Datacenter Instruction Set Architecture 

Goals of DISA: 
• Efficiently express logic 
• Efficient on common hardware 
• Easy to implement and port 
• Scalable parallelization mechanism and memory 

model 
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DISA retains the generality and efficiency of 
traditional ISAs, and enables the system to scale 
to many machines 
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add   (0x100001000):q, 8(0x100001000), 0x100000000020 

opcode operands 

operand attributes: 
64-bit integer 

0x100000000010 

800 

210 

1010 

+ 
(0x100001000) 

8(0x100001000) 

0x100000000020 

0x100001000 

0x100000000010 

• Unified operand address based on 
memory 

• Orthogonality in instruction design 
• Selected group of frequently used 

instructions for efficiency 
• Support for massive, flexible and 

efficient parallel processing 



Instruction Operands Effect 

mov D1, M1 Move [D1] to M1 

add D1, D2, M1 Add [D1] and [D2]; store the result in M1 

sub D1, D2, M1 Subtract [D2] from [D1]; store the result in M1 

mul D1, D2, M1 Multiply [D1] and [D2]; store the result in M1 

div D1, D2, M1 Divide [D1] by [D2]; store the result in M1 

and D1, D2, M1 Store the bitwise AND of [D1] and [D2] in M1 

or D1, D2, M1 Store the bitwise inclusive OR of [D1] and [D2] in M1 

xor D1, D2, M1 Store the bitwise exclusive OR of [D1] and [D2] in M1 

br D1, D2, M1 Compare [D1] and [D2]; jump to M1 depending on the comparing result 

bl M1, M2 Branch and link (procedure call) 

newr M1, M2, M3, M4 Create a new runner 

exit Exit and commit or abort 

DISA - instructions 
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Selected group of  frequently used instructions 

Instructions for massive, flexible  
and efficient parallel processing 



Store runner state 
Programming on a big single computer 
• Large, flat, and unified memory space 

– Shared region (SR) and private region (PR)  ~64 TBs and 4 GBs 
 

Challenge: thousands of runners access SR 
concurrently 
• A snapshot on interested ranges for a runner 

– Updates affect associated snapshot => concurrent accesses  
– Most accesses handled at native speed 
– Coordination only needed for committing memory ranges 
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Task dependency 
• Task dependency control is a key issue in 

concurrent program execution 
 

• X10 – synchronization mechanisms 
– Need to synchronize concurrent execution 

• MapReduce – Restricted programming model 
• Dryad – DAG-based 

– Non-trivial burden in programming 
– Automatic DAG generation only implemented for certain 

high- level languages 
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Watcher 
Watcher – explicitly express data dependence 

– Data dependence: “watched ranges” e.g. [0x1000, 0x1010) 
– Flexible way to declare dependence 
– Automatic dependence resolution 
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watch shared 
memory range  
[0x1000, 0x1010) 

Initial value in 0x1000 and 0x1008 is 0 
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watch shared 
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watch shared 
memory range  
[0x1000, 0x1010) 

store result in 0x1008 

if (*((long*)0x1000) != 0 &&  
    *((long*)0x1008) != 0) { 
    // add the sum produced by two 
    // runners together 
} else { 
    // create itself and keep watching 

Initial value in 0x1000 and 0x1008 is 0 
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– CCMR – a research testbed 
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• Microbenchmarks, prime-checker and         
k-means clustering 
• Compare with Xen, VMware, Hadoop and X10 
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Execution time and throughput of k-means as the size of dataset grows 
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Conclusion and future work 
• DVM is an approach to unifying computation in a 

datacenter 
– Illusion of a “big machine” – “The datacenter as a 

computer”  
– DISA as the programming interface and abstraction of DVM 
– One order of magnitude faster than Hadoop and X10 
– Scales to many compute nodes 

• Future work 
– Compiler for programmers, DVM across datacenters, 

etc. 
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Thank you! 
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