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Abstract—Cloud-based systems and the datacenter computing
environment present a series of challenges to system designers for
supporting massively concurrent computation on clusters with
commodity hardware. The platform software should abstractthe
unreliable but highly provisioned hardware to provide a high-
performance platform for a diversity of concurrent program s pro-
cessing potentially very large data sets. Toward this goal,a num-
ber of solutions are designed or proposed. Among these products
and systems, we elect three technologies, MapReduce/Hadoop,
DVM, and Windows Azure, as representatives of three different
approaches to constructing the infrastructure and instructing
the programming in the cloud. We empirically study these
technologies using a well-known and widely used application,
k-means, and analyze their performance data in relation with
the abstraction layers they establish. The implementations of k-
means on the three platforms are presented with sufficient details
to show the design patterns with these technologies. We analyze
the evaluation results in the context of the design goals and
constraints of the technologies, and show that the instruction-
level abstraction can provide flexible programming capability as
well as high performance.

Keywords—Cloud computing; k-means; parallel programming;
MapReduce; DISA; big data processing

I. I NTRODUCTION

We entered the cloud computing era without a consensus
on how large-scale distributed computing systems should be
constructed. As many problems remain unsolved for systems
with hundreds of loosely-coupled nodes, leading Internet firms
have constructed datacenters orders of magnitude larger than
typical “large-scale” systems around 2000’s. To system de-
signers, datacenter systems present new technical challenges
for the following reasons.

• First, the scale of a datacenter can reach hundreds
of thousands of compute servers, which is out of the
scope of many distributed algorithms.

• Second, constructing a loosely coupled system at
such a scale with commodity hardware inevitably
introduces faults in the system to the extent that
failures of components are “norm” [1]. This design
context departs significantly from traditional high-
performance computing systems.

• Third, the applications in datacenters typically require
extremely high availability and process very large

data with high throughput [2]. Moreover, a number
of computing tasks require deterministic output to
ensure correctness, which is well accepted practice
in computations of smaller scale but turns out to be
very difficult in datacenter systems without noticeably
affecting performance.

• Finally, a datacenter is a shared environment where
a number of applications run concurrently and may
interact with each other. In contrast, a typical high-
performance computing (HPC) environment can run
in a dedicated or isolated manner. In fact, many HPC
users desire to have their application run in relatively
isolated resource compartments.

In this context, the cloud computing infrastructure should
abstract the unreliable but highly provisioned hardware to
provide a high-performance platform for a diversity of con-
current programs processing potentially very large data sets.
The programs should be easy to write, worry-free to deploy,
and fast to execute.

Several technologies are developing towards this goal–
besides earlier solutions developed by Google, Yahoo!, and
other industry firms, integrated solutions start to emerge and
combine existing software development practices.In addition, a
few academic research systems exhibit excellent performance
and potentially indicate future directions of innovation in this
area.

Among these products and systems, we elect three tech-
nologies, MapReduce/Hadoop [3], DVM [4], and Windows
Azure [5], as representatives of three different approaches to
constructing the infrastructure and instructing the program-
ming in the cloud. We empirically study these technologies
using a well-known and widely used application, k-means, and
analyze their performance data in relation with the abstraction
layers they establish. The implementations ofk-means on the
three platforms are presented with sufficient details to show
the design patterns with these technologies. Our study reveals
some characteristics of the design space of cloud computing,
and sheds light onto how to construct and program cloud-based
systems and applications.

The rest of the paper is organized as follows. Section II
introduces the background of the technologies discussed in
this paper. Section III presents the k-means programming on



MapReduce/Hadoop, DVM and Windows Azure. Section IV
evaluates the performance of k-means computation on the three
platforms, and analyzes the experimental results. The related
work is discussed in Section V, and we provide concluding
remarks in Section VI.

II. BACKGROUND

When Internet datacenters were first multiplexed to con-
duct serious data-intensive processing, it became obviousthat
there lacked a method to orchestrate the numerous compute
nodes in such systems to conduct effective computation. In
spite of immense work on distributed computing and parallel
processing, traditional approaches are ill-suited for thenew
computing platform. Consequently, several technologies have
been developed to enable large-scale distributed processing in
datacenters, pioneered by Google’s MapReduce [3]. Recently,
Microsoft’s Windows Azure integrated a full set of cloud-
related technologies, including not only distributed execution
but also programmable resource provisioning and data-layer
abstractions, in the existing development frameworks [5],[6].
Another important trend is to conduct in-memory computation
on commodity-hardware-based clusters. As one of the earliest
approaches in this category, the DVM technology constructs
an instruction-level abstraction to enable programs distribute
computation in a large shared memory space [4].

A. MapReduce-style computation

MapReduce is perhaps the most widely recognized cloud
computing technology. It simplifies the data dependence and
regulates the semantics of the tasks (e.g., tasks should be
idempotent) so that it is easy to implement “embarrassingly
parallel” programs and utilize the large number of processor
cores in a cluster [3]. Although multiple implementations
extend the MapReduce framework to multicore and GPGPU
processing [7], [8], MapReduce is mainly design for massively
parallel data-intensive processing on a cluster of compute
nodes.

While MapReduce is a computational framework, its de-
sign is highly dependent on the underlying filesystem ab-
straction, GFS [1]. First, the replicated data chunks in the
filesystem effectively enhance the scheduling efficacy and the
I/O bandwidth. Second, the filesystem provides a means of
maintaining very large program state and providing a “global”
namespace. Finally, atomic operations (e.g., rename) in the
filesystem ensures the correctness of the MapReduce com-
putation. The performance of MapReduce computation also
relies on a datacenter-wide “meta-scheduler”. The open source
variant of MapReduce, Hadoop, has implemented a filesystem,
HDFS, with similar semantics to those provide by GFS and a
application-level task scheduler.

B. Languages, virtual machines, and DVM

Virtualization is considered part of the technical foundation
of cloud computing. In fact, virtualization can take place at
several different system layers, and the level of abstraction
makes significant difference in generality, expressiveness, and
performance. X10 represents an approach of abstracting com-
putation at the language level [9]. Similar approaches include

Fig. 1. Organization of two DVM virtual machines on three computers. Each
DVM virtual machine utilizes computing resources providedby one single
computer or many computers.

Fortress, Google App Engine, and Chapel. The language-
level approach gives the programmers more precise control
of the semantics of parallelization and synchronization, and
X10’s PGAS approach (Partitioned Global Address Space) can
potentially support very large data for sophisticated processing.
Amazon EC2, on the other hand, abstracts the platform at
the instruction level, and builds on existing VMM (Virtual
Machine Monitor) technology.

The DVM technology represents a new virtualization func-
tion, which provides a low-level abstraction but enables it
to support large-scale clusters and sophisticated parallelizable
processing [4]. It introduces a new ISA, Datacenter Instruction
Set Architecture (DISA), which can be easily emulated on
existing hardware. Above such a general architecture, a large
virtual machine, DVM, can coordinate resources from a large
number of physical hosts and support various programming
languages.

Fig. 1 shows the organization of a DVM system composed
of two virtual machines spanning three physical hosts. The
instruction-level abstraction provided by DISA is very close
to typical machine instructions directly supported by processor
hardware. However, the semantics of the instructions and the
memory model enable multiple tasks, each called a runner, to
reside in a large shared memory space, conduct computation
and orchestrate massively parallel processing in the abstraction
of a “single computer”. The runners resolve their dependence
upon each other through a watcher mechanism provided by
the DVM. In particular, a latter task depending on an earlier
task’s output can be implemented as a “watcher” that monitors
the memory area where the former task writes the output data.
Once the watched area is modified, the latter task is activated
and allowed to proceed with its computation.

C. Windows Azure

The Windows Azure Platform, developed by Microsoft,
provides a full set of abstractions and programming tools
for developing cloud-based applications. It also uses several
related technologies, e.g., VMM, scalable key value store,
and datacenter-oriented programming languages, to construct
a fairly complete solution.

An application materializes as services hosted in Windows
Azure, consisting of one or multiple web roles together with
a set of optional worker roles. The program running in the
roles may invoke distributed key value store or database



services via well-defined APIs to meet the requirements of
a spectrum of applications, including commercial applications
requiring strict transactional semantics. Similar to DVM,Azure
allows programmers to use programming languages of their
choice, given that the language is supported by the program
development environment (e.g., Microsoft Visual Studio) and
the Windows Azure SDK.

III. K-MEANS PROGRAMMING AND SYSTEM SUPPORT

k-means is a well-known data clustering application used
in many areas such as data mining, computing vision and
information retrieval.It partitions a data set intok clusters
iteratively, and has been implemented in various software
systems and applications.Moreover,k-means is widely used
for evaluating cloud-based technologies, and, with its clear
algorithmic design and adjustable problem size, presents a
manageable workload with which various cloud-related tech-
nologies can be studied [10], [11].

The k-means process starts withk initial cluster centroids
and iteratively refines the clusters by reassigning points to
the closest centroids and updating the clusters’ centroids.
We implement thek-means algorithm with a similar iterative
workflow to the one used in Mahout and X10, and optimize
the algorithm to achieve better performance in the distributed
environment. Similar optimizations are also used in some prior
work [10], [12].

A. MapReduce and Hadoop

The iterative computation ofk-means does not directly fit
into the MapReduce framework, which mandates a reduce
stage following a map stage. However, the computation in
each iteration is similar with different cluster centroidsand
the two phases (assigning points to clusters and calculating
the new centroids) in each iteration can be expressed as
one MapReduce job—we use the map tasks to perform the
distance computation and point assignment to clusters as the
distance computation between one point and the centroids is
irrelevant to the computation for other points in one iteration,
and the distance computation can be executed in parallel. The
calculation of the new centroids can be performed by the
reduce tasks. Hence, we can iteratively run MapReduce jobs
and each MapReduce job performs the computation in each
iteration of thek-means algorithm. As the distance computa-
tion is the most intensive calculation ink-means algorithm, the
computation is effectively parallelized using the MapReduce
programming model.

Alg. 1 shows thek-means clustering algorithm on Hadoop.
The input data are initially stored in files of roughly equal
sizes. The input files contain data points’ coordinates as a
sequence of<key, value>pairs where the coordinates are
stored in the value field. To share the centroids which are read
and updated by each MapReduce job, we store the centroids
in files in HDFS so that they are read by the map tasks for
distance computation and are updated by reduce tasks with the
new centroids. Hence, the final output of thek-means cluster
program is the centroid files after the last iteration.

The combine function minimizes the communication
among map and reduce tasks. Using multiple MapReduce jobs,
we are able to implement the iterative computation requiredby

Algorithm 1 k-means clustering using Hadoop
1: create currentcentroids and newcentroids in the file system
2: write new centroids with the firstk points in the input files
3: repeat
4: delete currentcentroids, rename newcentroids to cur-

rent centroids, and create empty newcentroids
5: for all map tasksdo
6: read the data points from the input files
7: read currentcentroids
8: for all data pointsdo
9: calculate the distances between the data point and each

centroid
10: n= the identity of the cluster with the closest centroid
11: v=coordinates of the data point
12: output the<n, v>(assign data point v to cluster n)
13: end for
14: end for
14: Run the combine function to sum the values of data points

assigned to the same cluster and output<n, V>for each
distinct n where V is a composite value of the coordinates
of the centroid of the data points being combined and the
number of data points associated with n

15: for all reduce tasksdo
16: sum all the intermediate values generated by the combine

functions and compute the new cluster centroids.
17: write the new centroids to file newcentroids
18: end for
19: until the difference between the centroids in currentcentroids

and newcentroids is less than a threshold or the number of
iterations reaches the maximum value

k-means. However, the transition between successive MapRe-
duce jobs cannot be expressed inside the MapReduce frame-
work itself, and external “glue” language must be employed
to make such transition happen. It is also noteworthy that the
external logic forces the program to use the distributed file
system as the media for recording program state. These issues,
although tolerable in “embarrassingly parallel” programs, re-
sults in non-trivial burden in programming and performance
for this slightly sophisticated application.

B. DISA and DVM

DISA presents a generic programming platform, and DVM
is constructed above this generic abstraction layer. Hence, it is
not difficult to implement thek-means algorithm on a DVM.
The program flows are instantiated to runners in DVM and
the dependence between the iterations and phases inside each
iteration is expressed with watchers. Thek-means program
on DVM reads its input from disks through one of its I/O
channels. Alg. 2 shows thek-kmeans clustering algorithm on
DVM.

It may appear to be an unnecessary overhead that the
program createsM dist_cal_runners in each iteration.
In fact, this design results from the snapshotted memory
semantics in DISA–the runners see data in its snapshot created
upon the runner’s instantiation, and the new centroids created
at the end of one iteration are visible to runners created at
the beginning of the next iteration. It is very efficient to
spawn new runners on a DVM, and this makes the overhead
of creating runners practically negligible. In comparison, the
MapReduce-style programming also requires the program to



Algorithm 2 k-means clustering on DVM
1: read data points from the I/O channel and store them in desig-

nated memory areas
2: new centroids = the firstk data points
3: repeat
4: current centroids = newcentroids;
5: createM (a program parameter)dist_cal_runners, each

responsible for one partition of data points, and one
dist_cal_runner_watcher.

6: for all dist_cal_runner and its associated partition Pdo
7: for all data point p in Pdo
8: calculate the distances between p and each centroid in

current centroids
9: assign p to the closest centroid n

10: add p to the sum for centroid n in P – store n, the sum
with p included and the number of data points, including
p, associated with n in P

11: end for
12: dist_cal_runner_watcher is activated each time a

dist_cal_runner exits and commits.
13: dist_cal_runner_watcher checks whether all

dist_cal_runner runners have completed
14: if all dist_cal_runner runners have completedthen
15: the watcher creates thecentroid_cal_runner
16: centroid_cal_runner sums all the intermediate val-

ues generated bydist_cal_runners for each centroid,
computes the new cluster centroids and assigns them to
new centroids

17: else
18: exit the watcher
19: end if
20: end for
21: until the difference between the centroids in currentcentroids

and newcentroids is less than a threshold or the number of
iteration reaches the maximum value

create numerous map and reduce tasks in each iteration, but the
tasking overhead is very heavy in the current implementations.

C. Windows Azure

The web and worker roles in Azure are general enough
to implement almost any computational jobs with Windows
Azure-enabled languages, with web roles incorporated with
built-in web servers. However, it is still a technical challenge
to use the distributed data services to construct a reliable
mechanism for recording program state and enabling web and
worker roles to exchange intermediate data. Alg. 3 shows the
design ofk-means on Windows Azure.

To implementk-means on Windows Azure, we use the
Windows Azure blob storage to store the input dataset and the
output results. The communication between different rolesre-
lies on the Windows Azure queue service. We build two types
of worker roles – amaster role and aslave role. There is only
one master worker role (henceforth calledmaster) instance
which is responsible of partitioning the dataset, assigning tasks,
and collecting results. There are one or multiple slave worker
role (henceforth calledslave) instances. They consume the
tasks in the task queue, generate the intermediate results in
its data partition, and write back to the result queue.

Algorithm 3 k-means clustering on Windows Azure
1: new centroids = the firstk data points in the input
2: repeat
3: current centroids = newcentroids
4: master partitions the dataset
5: master writes centroids together with the task control infor-

mation (e.g., the number of concurrent tasks) into the task
queue

6: for all slaves do
7: retrieve the tasks from the queue and compute the intermedi-

ate results consisting of the centroid assignment, the sum of
the coordinates of the data points assigned to a cluster in its
partition and the number of data points in the corresponding
cluster and partition

8: end for
8: master collects the intermediate results, computes the new

centroids, and assigns them to newcentroids
9: until the difference between the centroids in currentcentroid and

new centroids is less than a threshold or the number of iteration
reaches the maximum value

IV. PERFORMANCE, PROGRAMMABILITY, AND
EMPIRICAL EXPERIENCE

With k-means implemented on Hadoop, DVM, and Azure,
we conduct an empirical study on these implementations
to study the performance of these solutions, and link the
observed performance data to the design choices in cloud
computing technologies. To ensure the applicability of our
observations, we run the experiments on both research testbeds
and industrial platforms such as industrial computing clusters
and the Windows Azure platform.

Fig. 2 presents the execution time fork-means on DVM
and Hadoop on 16 working nodes. From the results, we can
see that DVM is at least 13 times faster than Hadoop. We
believe this indicates that instruction-level abstractions can lead
to more efficient computation and less tasking overhead. While
an optimized language-layer construct, such as a MapReduce
implementation using memory as the main data storage, can
significantly increase the performance, such optimizationis
unlikely to close the gap between the language and instruction-
layer abstractions.
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Fig. 2. Execution time fork-means on 16 nodes

Illustrating the speedup, Fig. 3 shows the relative perfor-
mance fork-means on DVM and Hadoop on the research
testbed (“/R” in the figure) and industrial testbed (“/I” in the
figure) as we scale the number of compute nodes. The relative
performance is calculated with respect to execution time on
Hadoop with one node. Fig. 4 presents the execution time and
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Fig. 4. Execution time and throughput ofk-means

throughput ofk-means on DVM with 50 compute nodes as we
scale the dataset from 12,800,000 to 204,800,000 points. The
throughput is calculated through dividing the number of points
by the execution time. The result shows that the throughput
increases with the data size, which reflects that DVM scales
well with the data size.

Since DVM shows excellent scalability and efficiency, it
may appear that the instruction-level abstraction represents the
best choice for constructing the cloud technology. However,
similar to the situation with traditional ISAs, the instruction
layer is mainly defining the interface between hardware and
software, and may not provide a complete solution to program-
ming. In fact, our experience of developing programs in the
DISA assembly language verifies the challenge of developing
programs at a level close to the instruction set, and has
prompted us to start developing a compiler for DISA. The goal
of the DVM is to provide a powerful foundation, rather than
the completion, of the cloud computing technology, and new
software tools and supportive routines shall be added to the
platform to fully utilize its capability and enhance productivity.

To provide a complete programming environment, Win-
dows Azure integrates the distributed data and processing
services with the familiar Visual Studio based development
environment. Fig. 5 shows the performance ofk-means on
Windows Azure platform with 1master and 1 to 4slaves. The
worker roles reside on small instances in Windows Azure, and
both the roles and the Azure storage service are located in the
“South Central US” region. We also uses the local emulator to
evaluate and compare the execution ofk-means. The Windows
Azure emulator runs on a server with 4 CPU cores and 6GB
of memory.

We observe that, when the number ofslaves increases
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Fig. 5. Execution time of k-means computation on Windows Azure

from 3 to 4, the speedup becomes low or even negative.
Based on our study, this is likely due to the sharing of CPU
resources— 3slaves and 1master can each use 1 CPU core
almost exclusively. However, when we have 1master and 4
slaves, totally 5 worker role instances share the 4 CPU cores
on the physical host, and this serializes a significant part of
the computation. Similarly, on the Windows Azure platform,
we also observed the same phenomenon. Such hardware-
coupling overhead can be mitigated by better scheduling or
more resources. Looking at the performance data, we can
also conclude that, without the hardware-coupling overhead,
k-means exhibits obvious speedup on Windows Azure. This
verifies that the Windows Azure platform, although designed
to provide an easy-to-program methodology in a familiar
development environment, can potentially support parallelized
scientific computing with the worker roles.

The evaluation clearly shows that the instruction-level
abstraction, DISA and DVM, exhibits superior performance
in the computation. More importantly, the Turing-complete
instruction set of DISA presents a model that can express a
wide range of applications. We believe that such generality
is a key advantage in the future design of cloud computing
systems. Meanwhile, MapReduce has been proved an effective
solution to data-intensive computing when the processing
logic and data dependence relation fit its specific computation
model. Windows Azure, although optimized for Web-based
applications, also exhibits a significant amount of flexibility
in supporting scientific computation.

V. RELATED WORK

Many programming frameworks and languages are pro-
posed and designed to exploit the computing power of the large
number of compute servers inside today’s gigantic datacenters.
Dean et al. have created the MapReduce programming model
for Google’s datacenter environment [3]. Dryad takes a more
general approach, using a “communication DAG (directed
acyclic graph)” to depict the dependency among multiple
task instances [13]. While these frameworks are successful
in large data processing, the restricted programming model
makes it difficult to design sophisticated and time-sensitive
applications [11], [14], [15], [16].

DVM, on the other hand, allows programmers to easily
design general-purpose applications running on a large number



of compute nodes by providing a more flexible programming
model [4]. DVM and DISA, the instruction set of DVM,
represent a virtualization technology different from widely
used virtualization systems, such as Xen and VMware on
the x86 ISA [17], [18]. As comparison, VMware pioneered
the virtualization of the x86 ISA, and vNUMA extends IA-
64 to multiple hosts connected through an Ethernet network
that provides “sender-oblivious total-order broadcast” [19].
The new DISA instruction set allows programs to scale up
to much larger clusters. Currently, optimization of programs
running on a DVM is programmer-driven. Although it has been
shown that the performance of DISA programs are very high,
optimizing compilers will make it much easier to harness such
optimization techniques.

In the meantime, the instruction-level abstraction must
combine with high-order languages and compilers to fully
release its capability. High-level languages, such as X10,
Sawzall and DryadLINQ, which are implemented on top of
programming frameworks (MapReduce and Dryad), make the
data-processing programs easier to design [9], [20], [21].To
implement their linguistic features efficiently, the language-
level approach gives also calls for an underlying computing
infrastructure that is capable of supporting general-purpose
programs, follows a storage-computing coupled architecture,
and provides measures for system-wide optimization. Towards
these requirements, DVM provides a foundation upon which
language-level instruments can be built.

VI. CONCLUSION

Our study shows that DVM has the best performance for
computation in a datacenter, but higher-order languages and
compilers must be used to make instruction-level abstraction
easy to program. Meanwhile, Windows Azure provides a
relatively full set of data services, language support, andde-
velopment and deployment tools. The role constructs together
with the queue-based communication can support a variety
of applications, including scientific workloads, on Windows
Azure.
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