K Means of Cloud Computing: MapReduce, DVM,
and Windows Azure

Lin Gu Zhonghua Sheng Zhigiang Ma
Xiang Gao Charles Zhang

Department of Computer Science and Engineering

Hong Kong University of Science and Technology
Kowloon, Hong Kong SAR
Email: {lingu,szh,zma,xgaoaa,charlégecse.ust.hk

Abstract—Cloud-based systems and the datacenter computing

environment present a series of challenges to system desggs for
supporting massively concurrent computation on clusters \th
commodity hardware. The platform software should abstractthe
unreliable but highly provisioned hardware to provide a high-
performance platform for a diversity of concurrent program s pro-
cessing potentially very large data sets. Toward this goah num-
ber of solutions are designed or proposed. Among these prodts

Yaohui Jin

State Key Lab of Advanced Optical Communication
Systems and Networks, Shanghai Jiaotong University

800 Dongchuan Road, Minghang District
Shanghai, China
Email: jinyh@sjtu.edu.cn

data with high throughput [2]. Moreover, a humber

of computing tasks require deterministic output to

ensure correctness, which is well accepted practice
in computations of smaller scale but turns out to be
very difficult in datacenter systems without noticeably

affecting performance.

Finally, a datacenter is a shared environment where

and systems, we elect three technologies, MapReduce/Hagoo
DVM, and Windows Azure, as representatives of three differat
approaches to constructing the infrastructure and instruding
the programming in the cloud. We empirically study these
technologies using a well-known and widely used applicatio
k-means, and analyze their performance data in relation wih
the abstraction layers they establish. The implementatios of k-
means on the three platforms are presented with sufficient dails
to show the design patterns with these technologies. We ayak In this context, the cloud computing infrastructure should
the evaluation results in the context of the design goals and abstract the unreliable but highly provisioned hardware to
constraints of the technologies, and show that the instruan- provide a high-performance platform for a diversity of con-
level abstraction can provide flexible programming capabity as  current programs processing potentially very large dats. se
well as high performance. The programs should be easy to write, worry-free to deploy,

Keywords—Cloud computing; k-means; parallel programming; ~ and fast to execute.
MapReduce; DISA; big data processing

a number of applications run concurrently and may
interact with each other. In contrast, a typical high-
performance computing (HPC) environment can run
in a dedicated or isolated manner. In fact, many HPC
users desire to have their application run in relatively
isolated resource compartments.

Several technologies are developing towards this goal—
besides earlier solutions developed by Google, Yahoo!, and
other industry firms, integrated solutions start to emenge a

ombine existing software development practices.In aufdia
w academic research systems exhibit excellent perfacman
nd potentially indicate future directions of innovatianthis

I. INTRODUCTION

We entered the cloud computing era without a consensu
on how large-scale distributed computing systems should b
constructed. As many problems remain unsolved for system‘%
with hundreds of loosely-coupled nodes, leading Intermetdfi

have constructed datacenters orders of magnitude larger th Among these products and systems, we elect three tech-
typical “large-scale” systems around 2000’s. To system denologies, MapReduce/Hadoop [3], DVM [4], and Windows
signers, datacenter systems present new technical cheflen azure [5], as representatives of three different approsithe

for the following reasons. constructing the infrastructure and instructing the paogr

« First, the scale of a datacenter can reach hundre ing in the cloud. We empirically study these technologies

of thousands of compute servers. which is out of the sing a well-known and widely used application, k-meansd, an
>Omp o analyze their performance data in relation with the abstrac
scope of many distributed algorithms.

layers they establish. The implementationscaheans on the

e Second, constructing a loosely coupled system athree platforms are presented with sufficient details tonsho
such a scale with commodity hardware inevitably the design patterns with these technologies. Our studyalgve
introduces faults in the system to the extent thatsome characteristics of the design space of cloud computing
failures of components are “norm” [1]. This design and sheds light onto how to construct and program cloudebase
context departs significantly from traditional high- systems and applications.

performance computing systems. The rest of the paper is organized as follows. Section I

e Third, the applications in datacenters typically requireintroduces the background of the technologies discussed in
extremely high availability and process very largethis paper. Section Ill presents the k-means programming on



MapReduce/Hadoop, DVM and Windows Azure. Section IV DVM 1 DVM 2

evaluates the performance of k-means computation on the thr 1 [ 1 |

platforms, and analyzes the experimental results. Theecbla ( Scheduler ) || D
work is discussed in Section V, and we provide concluding
remarks in Section VI.
ARC ARC ARC ARC ARC| |ARC
I[l. BACKGROUND /|

Physical host 1 Physical host 2 Physical host 3

When Internet datacenters were first multiplexed to con- D Rcomp { rumer

duct serious data-intensive processing, it became obviats
there Ia.leed a method 10 orchestrate the- numerous C-OmpUt|eg. 1. Organization of two DVM virtual machines on three qarters. Each
”O,des 'r,] such systems to (_;O”_dUCt effective ,CompUtatlon' IEVM virtual machine utilizes computing resources providey one single
spite of immense work on distributed computing and paralletomputer or many computers.

processing, traditional approaches are ill-suited for tiegv

computing platform. Consequently, several technologesh

been developed to enable large-scale distributed prowessi Fortress, Google App Engine, and Chapel. The language-
datacenters, pioneered by Google’s MapReduce [3]. Regentllevel approach gives the programmers more precise control
Microsoft's Windows Azure integrated a full set of cloud- of the semantics of parallelization and synchronizatiaord a
related technologies, including not only distributed ex@mn  X10’'s PGAS approach (Partitioned Global Address Space) can
but also programmable resource provisioning and data-laygotentially support very large data for sophisticated pssing.
abstractions, in the existing development frameworks[f], = Amazon EC2, on the other hand, abstracts the platform at
Another important trend is to conduct in-memory computatio the instruction level, and builds on existing VMM (Virtual
on commodity-hardware-based clusters. As one of the sarlie Machine Monitor) technology.

approaches in this category, the DVM technology constructs . o
an instruction-level abstraction to enable programs idiste '€ DVM technology represents a new virtualization func-
computation in a large shared memory space [4]. tion, which provides a low-level abstraction but enables it

to support large-scale clusters and sophisticated phzalbte
) processing [4]. It introduces a new ISA, Datacenter Insioac
A. MapReduce-style computation Set Architecture (DISA), which can be easily emulated on

MapReduce is perhaps the most widely recognized cIou&.X'tSt'rl'g harho_lwareD.VAl\\/liJove such 3. getneral archﬂecf:ture,g;ilar
computing technology. It simplifies the data dependence and" u% ma](c: "ae'. | h, c?n cogr Inate ;esoqrces rom a large
regulates the semantics of the tasks (e.g., tasks should llr)‘é'm er of physical hosts and support various programming

idempotent) so that it is easy to implement “embarrassinglyanguages‘

parallel” programs and utilize the large number of processo  Fig. 1 shows the organization of a DVM system composed
cores in a cluster [3]. Although multiple implementations of two virtual machines spanning three physical hosts. The
extend the MapReduce framework to multicore and GPGPUhstruction-level abstraction provided by DISA is very s#o
processing [7], [8], MapReduce is mainly design for masgive to typical machine instructions directly supported by @sor
parallel data-intensive processing on a cluster of computfardware. However, the semantics of the instructions aed th
nodes. memory model enable multiple tasks, each called a runner, to
While MapReduce is a computational framework, its de_resd|de 'E a large sha(edl memo"ryl space, (_:onQUCtt] c;;r;putatlon
sign is highly dependent on the underlying filesystem ab-ap 9“.: eistrate mass!’\/c-z-l% paralle proceslsmgr:n_tde EIQ
straction, GFS [1]. First, the replicated data chunks in the' & smgﬁ cohmpu';]er. he runner:s reso vhet_e|r epe_r:j edng
filesystem effectively enhance the scheduling efficacy aed t UPO%\?&C | ot e{.t Iroug Iattwaic Erdmec (zja_msm provi el. y
I/O bandwidth. Second, the filesystem provides a means q € - In particuiar, a fatter task depending on an eartier

maintainig very lage program site and providing a“globa 250 S 1 be Implemented a5 aleher hat ooy
namespace. Finally, atomic operations (e.g., rename) én th Y P :

filesystem ensures the correctness of the MapReduce cor’ﬁ)-nCe the watched area is_mc_)dified, the Ie_ltter task is activate
putation. The performance of MapReduce computation alsgnd allowed to proceed with its computation.

relies on a datacenter-wide “meta-scheduler”. The opercsou

variant of MapReduce, Hadoop, has implemented a filesysteng;. Wndows Azure

HDFS, with similar semantics to those provide by GFS and a

application-level task scheduler. The Windows Azure Platform, developed by Microsoft,

provides a full set of abstractions and programming tools
for developing cloud-based applications. It also usesraéve
B. Languages, virtual machines, and DVM related technologies, e.g., VMM, scalable key value store,
and datacenter-oriented programming languages, to catstr

Virtualization is considered part of the technical founalat a fairly complete solution.

of cloud computing. In fact, virtualization can take plade a
several different system layers, and the level of abstracti An application materializes as services hosted in Windows
makes significant difference in generality, expressivenasd Azure, consisting of one or multiple web roles together with
performance. X10 represents an approach of abstracting cora set of optional worker roles. The program running in the
putation at the language level [9]. Similar approachesuibel roles may invoke distributed key value store or database



services via well-defined APIs to meet the requirements oAlgorithm 1 k-means clustering using Hadoop

a spectrum of applications, including commercial appiorat 1: create currententroids and newvecentroids in the file system
requiring strict transactional semantics. Similar to D\ViMure 2: write new centroids with the firsk points in the input files
allows programmers to use programming languages of their3: repeat

choice, given that the language is supported by the program®: delete currenicentroids, rename newentroids to cur-
development environment (e.g., Microsoft Visual Studio}ia rent centroids, and create empty neventroids

the Windows Azure SDK. : for all map taskslo

5

6 read the data points from the input files

7: read currentcentroids

8 for all data pointsdo
calculate the distances between the data point and each
centroid
n= the identity of the cluster with the closest centroid

Ill. K-MEANS PROGRAMMING AND SYSTEM SUPPORT

k-means is a well-known data clustering application used =
in many areas such as data mining, computing vision and,,.

information retrieval.lt partitions a data set into clusters ;. v=coordinates of the data point
iteratively, and has been implemented in various software;,. output the<n, v>(assign data point v to cluster n)
systems and applications.Moreovérmeans is widely used 13: end for

for evaluating cloud-based technologies, and, with itsarcle 14: end for
algorithmic design and adjustable problem size, presents &: Run the combine function to sum the values of data points

manageable workload with which various cloud-related tech assigned to the same cluster and output, V>for each
nologies can be studied [10], [11]. distinct n where V is a composite value of the coordinates

' of the centroid of the data points being combined and the

The k-means process starts wikhinitial cluster centroids number of data points associated with n
and iteratively refines the clusters by reassigning poiats t 15:  for all reduce taskslo .
the closest centroids and updating the clusters’ centroidsté: sum all the intermediate values generated by the combine
We implement thei-means algorithm with a similar iterative functions and compute the new cluster centroids.
17: write the new centroids to file newentroids

workflow to the one used in Mahout and X10, and optimize
the .algorlthrtn é(.) th'e"f. b_ett(i_r performzilnce |n(}he dls’@ebu 19: until the difference between the centroids in curreshtroids
environment. similar optimizations are also used In sonm pr and newcentroids is less than a threshold or the number of

work [10], [12]. iterations reaches the maximum value

18: end for

A. MapReduce and Hadoop

The iterative computation of-means does not directly fit k-means. However, the transition between successive MapRe-
into the MapReduce framework, which mandates a reducguce jobs cannot be expressed inside the MapReduce frame-
stage following a map stage. However, the computation itwork itself, and external “glue” language must be employed
each iteration is similar with different cluster centroidsd to make such transition happen. It is also noteworthy that th
the two phases (assigning points to clusters and calcglatinexternal logic forces the program to use the distributed file
the new centroids) in each iteration can be expressed a&stem as the media for recording program state. Thesesissue
one MapReduce job—we use the map tasks to perform thalthough tolerable in “embarrassingly parallel” programes
distance computation and point assignment to clusterseas tigults in non-trivial burden in programming and performance
distance computation between one point and the centroids fér this slightly sophisticated application.
irrelevant to the computation for other points in one itenmat
and the distance computation can be executed in parallel. Th
calculation of the new centroids can be performed by thé>- DISA and DVM
reduce tasks. Hence, we can iteratively run MapReduce jobs
and each MapReduce job performs the computation in eac .
iteration of thek-means algorithm. As the distance computa-
tion is the most intensive calculation kameans algorithm, the
computation is effectively parallelized using the MapRezlu
programming model.

DISA presents a generic programming platform, and DVM
onstructed above this generic abstraction layer. Hehise
not difficult to implement thei-means algorithm on a DVM.
The program flows are instantiated to runners in DVM and
the dependence between the iterations and phases inside eac
iteration is expressed with watchers. Theneans program
Alg. 1 shows thek-means clustering algorithm on Hadoop. on DVM reads its input from disks through one of its I/O
The input data are initially stored in files of roughly equal channels. Alg. 2 shows thie-kmeans clustering algorithm on
sizes. The input files contain data points’ coordinates as &VM.
sequence of<key, value-pairs where the coordinates are It 0 b head that th
stored in the value field. To share the centroids which aré rea may appear 1o De an unnecessary overheéad that the
and updated by each MapReduce job, we store the centroi(fg()gram createsM dist_cal_rummers in each iteration.

in files in HDFS so that they are read by the map tasks fo n fact, this design results from the snapshotted memory

distance computation and are updated by reduce tasks with t@ergﬁ?ﬁ'gsrmr?éﬁﬁmgg Itlltjir;?iias sa?% (:ﬁéar;gxscse?]?ﬁjsiggﬁl?t
new centroids. Hence, the final output of eans cluster atpthe end of one iteration aré visible to runners created at
program is the centroid files after the last iteration.

the beginning of the next iteration. It is very efficient to
The combine function minimizes the communicationspawn new runners on a DVM, and this makes the overhead

among map and reduce tasks. Using multiple MapReduce jobsf creating runners practically negligible. In comparistine

we are able to implement the iterative computation requised MapReduce-style programming also requires the program to



Algorithm 2 k-means clustering on DVM

Algorithm 3 k-means clustering on Windows Azure

1:

read data points from the 1/0 channel and store them in desig- 1. new _centroids = the firsk data points in the input

nated memory areas 2: repeat
2: new_centroids = the firsk data points 3:  current centroids = newcentroids
3: repeat 4:  master partitions the dataset
4:  current centroids = newcentroids; 5.  master writes centroids together with the task control infor-
5. create M (a program parameterdist_cal_runners, each mation (e.g., the number of concurrent tasks) into the task
responsible for one partition of data points, and one queue
dist_cal_runner_watcher. 6: for all slaves do
6: for all dist_cal_runner and its associated partition dd® 7 retrieve the tasks from the queue and compute the intermedi-
7: for all data point p in Rdo ate results consisting of the centroid assignment, the gum o
8: calculate the distances between p and each centroid in the coordinates of the data points assigned to a clustes in it
current centroids partition and the number of data points in the corresponding
9: assign p to the closest centroid n cluster and partition
10: add p to the sum for centroid n in P — store n, the sum 8: end for
with p included and the number of data points, including 8: master collects the intermediate results, computes the new
p, associated with n in P centroids, and assigns them to nesntroids
11: end for 9: until the difference between the centroids in curreentroid and
12: dist_cal_runner_watcher is activated each time a new_centroids is less than a threshold or the number of iteration
dist_cal_runner exits and commits. reaches the maximum value
13: dist_cal_runner_watcher checks whether all
dist_cal_runner runners have completed
145 if all dist_cal_runner runners.have completatien IV. PERFORMANCE PROGRAMMABILITY, AND
15: the watcher creates theentroid_cal_runner
16: centroid_cal_runner sums all the intermediate val- EMPIRICAL EXPERIENCE
ues generated byist_cal_runners for each centroid, With k-means implemented on Hadoop, DVM, and Azure,
computes t.ze new cluster centroids and assigns them e conduct an empirical study on these implementations
17 elsneew_centrm s to study the performance of these solgtions, gnd I_ink the
18: exit the watcher observgd performanqe data to the design chom_e_s in cloud
19- end if computing technologies. To ensure the applicability of our
20:  end for observations, we run the experiments on both researclretistb

21: until the difference between the centroids in curreentroids ~ and industrial platforms such as industrial computing telss
and newcentroids is less than a threshold or the number ofand the Windows Azure platform.
iteration reaches the maximum value

Fig. 2 presents the execution time fbrmeans on DVM
and Hadoop on 16 working nodes. From the results, we can
see that DVM is at least 13 times faster than Hadoop. We
create numerous map and reduce tasks in each iteratiomebut tbelieve this indicates that instruction-level abstratsioan lead
tasking overhead is very heavy in the current implemematio to more efficient computation and less tasking overheadléVhi
an optimized language-layer construct, such as a MapReduce
implementation using memory as the main data storage, can
significantly increase the performance, such optimizatsn
unlikely to close the gap between the language and instructi
layer abstractions.

The web and worker roles in Azure are general enough
to implement almost any computational jobs with Windows
Azure-enabled languages, with web roles incorporated with
built-in web servers. However, it is still a technical clealje
to use the distributed data services to construct a reliable
mechanism for recording program state and enabling web and
worker roles to exchange intermediate data. Alg. 3 shows the
design ofk-means on Windows Azure.

C. Windows Azure

9000

Hadoop ===
8000 |- PYM.=—=

7000

6000

5000

4000

3000

Execution time (second)

2000

1000

To implementk-means on Windows Azure, we use the
Windows Azure blob storage to store the input dataset and the
output results. The communication between different rodes
lies on the Windows Azure queue service. We build two type§:
of worker roles — anaster role and asave role. There is only
one master worker role (henceforth calleshster) instance lllustrating the speedup, Fig. 3 shows the relative perfor-
which is responsible of partitioning the dataset, assigtasks, mance fork-means on DVM and Hadoop on the research
and collecting results. There are one or multiple slave work testbed (“/R” in the figure) and industrial testbed (“/I" ihet
role (henceforth calledave) instances. They consume the figure) as we scale the number of compute nodes. The relative
tasks in the task queue, generate the intermediate results performance is calculated with respect to execution time on
its data partition, and write back to the result queue. Hadoop with one node. Fig. 4 presents the execution time and

Research testbed

Industrial testbed

0

ig. 2. Execution time fok-means on 16 nodes



300 T T T T T T T 5
DVMIR —+— x 10

Hadoop/R - T

250 | Hadoopil &1 | [ 1Azure
35F [ Emulator |

251

Relative performance

15}

execution time (ms)
N

- : .
2 4 6 8 10 12 14 16 0.5f
Number of nodes

1 2 3 4

Fig. 3. Relative performance d@f-means number of slave worker role instances

10000 55 Fig. 5. Execution time of k-means computation on Windows r&zu
Execution time —+—
Throughput —%—

from 3 to 4, the speedup becomes low or even negative.
Based on our study, this is likely due to the sharing of CPU
resources— 3aves and 1master can each use 1 CPU core
almost exclusively. However, when we haventster and 4
dlaves, totally 5 worker role instances share the 4 CPU cores

1000

Execution time (second)
Throughput (1000 points per second)

100 ® on the physical host, and this serializes a significant part o
125 26 512 1024 2048 the computation. Similarly, on the Windows Azure platform,
Size of the dataset (x100,000 points)
we also observed the same phenomenon. Such hardware-
Fig. 4. Execution time and throughput bfmeans coupling overhead can be mitigated by better scheduling or

more resources. Looking at the performance data, we can
also conclude that, without the hardware-coupling ovethea
k-means exhibits obvious speedup on Windows Azure. This

throughput ofk-means on DVM with 50 compute nodes as We\ rifies that the Windows Azure ;
: platform, although designed
scale the dataset from 12,800,000 to 204,800,000 points. TI’{0 provide an easy-to-program methodology in a familiar

throughput is (_:alcu_lated through dividing the number ofhpmoi evelopment environment, can potentially support paizded
by the execution time. The result shows that the throughp cientific computing with the worker roles

increases with the data size, which reflects that DVM scale$ '
well with the data size. The evaluation clearly shows that the instruction-level

Since DVM shows excellent scalability and efficiency, it abstraction, DISA and DVM, exhibits superior performance

may appear that the instruction-level abstraction repitssbe :ng]uect?oonmggttég;olgiS’\,Afl\or?eggr?t% rt:nrtrl]yg dter}ethzt”::r;%\-chmgiea
best choice for constructing the cloud technology. However_ . 1>A P . press
wide range of applications. We believe that such generality

similar to the situation with traditional ISAs, the insttion is a kev advantage in the future desian of cloud computin
layer is mainly defining the interface between hardware an@s y 9 9 puting

software, and may not provide a complete solution to program ystems. Meanwh_lle, Mz_:lpReduce h_as been proved an effe(_;nve
solution to data-intensive computing when the processing

ming. In fact, our experience of developing programs in the . S y :
e . Jogic and data dependence relation fit its specific compnati
DISA assembly language verifies the challenge of developlneéﬂodel' Windows Azure, although optimized for Web-based

programs at a level close to the instruction set, and ha lications, also exhibits a significant amount of flextpil
prompted us to start developing a compiler for DISA. The goaf'jlpp ’ 9

of the DVM is to provide a powerful foundation, rather than In supporting scientific computation.
the completion, of the cloud computing technology, and new
software tools and supportive routines shall be added to the V. RELATED WORK

platform to fully utilize its capability and enhance prodiuity. Many programming frameworks and languages are pro-

To provide a complete programming environment, Win-posed and designed to exploit the computing power of thelarg
dows Azure integrates the distributed data and processingumber of compute servers inside today’s gigantic datacent
services with the familiar Visual Studio based developmenbDean et al. have created the MapReduce programming model
environment. Fig. 5 shows the performancekefmeans on for Google’s datacenter environment [3]. Dryad takes a more
Windows Azure platform with Inaster and 1 to 4daves. The  general approach, using a “communication DAG (directed
worker roles reside on small instances in Windows Azure, anécyclic graph)” to depict the dependency among multiple
both the roles and the Azure storage service are locatedkin tHask instances [13]. While these frameworks are successful
“South Central US” region. We also uses the local emulator tan large data processing, the restricted programming model
evaluate and compare the executiorkaheans. The Windows makes it difficult to design sophisticated and time-sevssiti
Azure emulator runs on a server with 4 CPU cores and 6GRpplications [11], [14], [15], [16].

of memory. DVM, on the other hand, allows programmers to easily

We observe that, when the number gfves increases design general-purpose applications running on a largebeum



of compute nodes by providing a more flexible programming [4]
model [4]. DVM and DISA, the instruction set of DVM,
represent a virtualization technology different from wide
used virtualization systems, such as Xen and VMware on(5,
the x86 ISA [17], [18]. As comparison, VMware pioneered
the virtualization of the x86 ISA, and VNUMA extends IA- g
64 to multiple hosts connected through an Ethernet network
that provides “sender-oblivious total-order broadcasid]]

The new DISA instruction set allows programs to scale up
to much larger clusters. Currently, optimization of pragsa  [7]
running on a DVM is programmer-driven. Although it has been
shown that the performance of DISA programs are very high,
optimizing compilers will make it much easier to harnesshsuc (g
optimization techniques.

In the meantime, the instruction-level abstraction must
combine with high-order languages and compilers to fully g
release its capability. High-level languages, such as X10,
Sawzall and DryadLINQ, which are implemented on top of
programming frameworks (MapReduce and Dryad), make the
data-processing programs easier to design [9], [20], [Ea]. [10]
implement their linguistic features efficiently, the laage-
level approach gives also calls for an underlying computinqll]
infrastructure that is capable of supporting general-psep
programs, follows a storage-computing coupled architectu
and provides measures for system-wide optimization. Tds/ar [12]
these requirements, DVM provides a foundation upon which
language-level instruments can be built. 13

13
VI.

Our study shows that DVM has the best performance for
computation in a datacenter, but higher-order languagds aril4]
compilers must be used to make instruction-level abstacti
easy to program. Meanwhile, Windows Azure provides 6[15]
relatively full set of data services, language support, ded
velopment and deployment tools. The role constructs tageth
with the queue-based communication can support a variety
of applications, including scientific workloads, on Window [16]
Azure.

CONCLUSION

ACKNOWLEDGMENT
[17]

This work was supported in part by the Huawei Tech-
nologies research grant HUAW17-15G00510/11PN, HKUST
research grants REC09/10.EG06, DAG11EG04G and SJTU
research grant 2011GZKF030902. We thank Microsoft for8l
providing computing resources and support for the researcﬁg]
on the Windows Azure platform.

REFERENCES [20]
[1] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google §jestem,”
In Proc. of the 9th ACM Symposium on Operating Systems Rplasi
(SOSP’03), 2003, pp. 29-43. [21]

[2] L. Barroso, J. Dean, and U. Hoelzle, “Web search for a gafhe
Google cluster architecture,” IEEE Micro, vol. 23, no. 2, @2-28,
2003.

[3] J. Dean and S. Ghemawat, “MapReduce: simplified datagssiog on
large clusters,” In Proc. of the 6th Symp. on Opearting Syst®esign
& Implementation (OSDI'04), Berkeley, CA, USA, 2004, pp.7t349.

Z. Ma, Z. Sheng, L. Gu, L. Wen, and G. Zhang, “DVM: Towards
a datacenter-scale virtual machine,” in Proceedings of8the ACM
SIGPLAN/SIGOPS Conference on Virtual Execution Environise
2012, pp. 39-50.
“Windows Azure,”
3/31/2013].

D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout, andRdsen-
blum, “Fast crash recovery in ramcloud,” in Proceedingshef Twenty-
Third ACM Symposium on Operating Systems Principles, s€&SB
'11, 2011, pp. 29-41.

B. He, W. Fang, Q. Luo, N. Govindaraju, and T. Wang, “Mass:
MapReduce framework on graphics processors,” in Procgsdf the
17th international conference on parallel architecturas @ompilation
techniques, 2008, pp. 260-269.

R. Yoo, A. Romano, and C. Kozyrakis, “Phoenix rebirth: adble

mapreduce on a large-scale shared-memory system,” in @éatkl
Characterization, 2009. [ISWC 2009. IEEE Internationam@gsium

on. IEEE, 2009, pp. 198-207.

P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kels
K. Ebcioglu, C. Von Praun, and V. Sarkar, “X10: an objeceated
approach to non-uniform cluster computing,” in ACM SIGPLAW-
tices, vol. 40, no. 10, 2005, pp. 519-538.

C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, A. Y. Ngand
K. Olukotun, “Map-Reduce for machine learning on multicbne Proc.
of NIPS’07, 2007, pp. 281-288.

J. Ekanayake, S. Pallickara, and G. Fox, “MapReducedfda inten-
sive scientific analysis,” in Fourth IEEE International @mence on
eScience, 2008, pp. 277-284.

W. Zhao, H. Ma, and Q. He, “Parallel k-means clusterirggdd on
mapreduce,” in roceedings of the First International Crerfee on
Cloud Computiong (CloudCom), 2009, pp. 674-679.

M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Byad:
distributed data-parallel programs from sequential fgdblocks,” in
Proceedings of the 2nd ACM SIGOPS/EuroSys European Cortfere
on Computer Systems, 2007, pp. 59-72.

Z. Ma and L. Gu, “The limitation of MapReduce: A probingase
and a lightweight solution,” in Proc. of the 1st Intl. Confa €loud
Computing, GRIDs, and Virtualization, 2010, pp. 68-73.

C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, aK@Zyrakis,
“Evaluating MapReduce for multi-core and multiprocessgstems,” in
Proc. of the 2007 IEEE 13th Intl. Symposium on High Perforogan
Computer Architecture, 2007, pp. 13-24.

H.-C. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker, fMeduce-
Merge: simplified relational data processing on large elsst in
SIGMOD '07: Proceedings of the 2007 ACM SIGMOD internatibna
conference on Management of data, 2007, pp. 1029-1040.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. HarrisHA, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtuatian,”
in Proceedings of the 19th ACM symposium on Operating System
Principles, 2003, pp. 164-177.

C. A. Waldspurger, “Memory resource management in VievESX
server,” SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp. 184;-2002.

M. Chapman and G. Heiser, “vnuma: A virtual shared-mgmmul-
tiprocessor,” in Proceedings of the 2009 USENIX Annual Tecél
Conference, June 2009, pp. 15-28.

R. Pike, S. Dorward, R. Griesemer, and S. Quinlan, fimeting the
data: Parallel analysis with Sawzall,” Sci. Program., &, no. 4, pp.
277-298, 2005.

Y. Yu, M. Isard, D. Fetterly, M. Budiu{J. Erlingsson, P. K. Gunda, and
J. Currey, “DryadLINQ: A system for general-purpose distted data-
parallel computing using a high-level language,” in the 8tinference
on Symposium on Operating Systems Design & Implementaf#668,
pp. 1-14.

http://www.windowsazure.com/, [kasaccess:



